

Intelligent Railroad Systems: Measuring & Mitigating Traffic Delays At Railroad Crossings In Commerce City

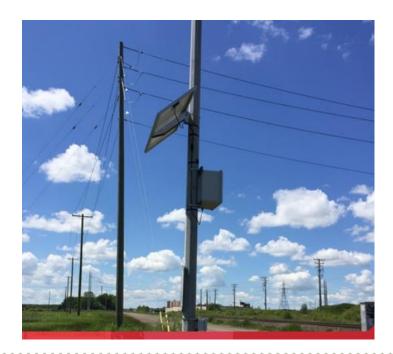
Overview

- Purpose and Need
- Technology
- How It Works
- Notional Study Locations
- Cost Estimate
- Funding
- Next Steps

Purpose and Need

- Implement a project to measure & mitigate traffic delays at railroad crossings in Commerce City
 - Possible crossings include;
 - UPRR At 120th, 104th, 96th, 88th, 72nd, 69th, 64th, 60th, & 56th
 64th, 60th, 56th Suncor
 - BNSF At 104^{th} , 96^{th} , 88^{th} , Rosemary, & 72^{nd}
- Investigate options to address traffic delays
 - Driver information systems
 - Signal timing
 - Grade separation
- Initiate Pilot Program at designated crossing(s)
 - Based on initial traffic delay data

Innovative Technology


- Use Bluetooth detection system to count cars

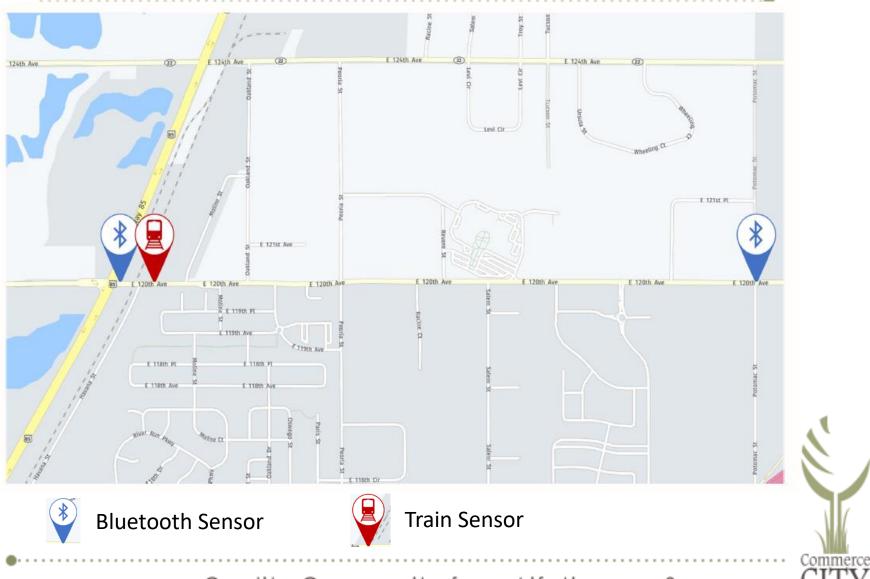
 Roadside locations
- Radar detection to determine train blockages
 Offset from railroad property
- Relatively inexpensive / mobile system
 - Flexible & portable
- Traffic data can be directed to integrative driver information / messaging systems
 - Provides real-time updates to drivers

How It Works

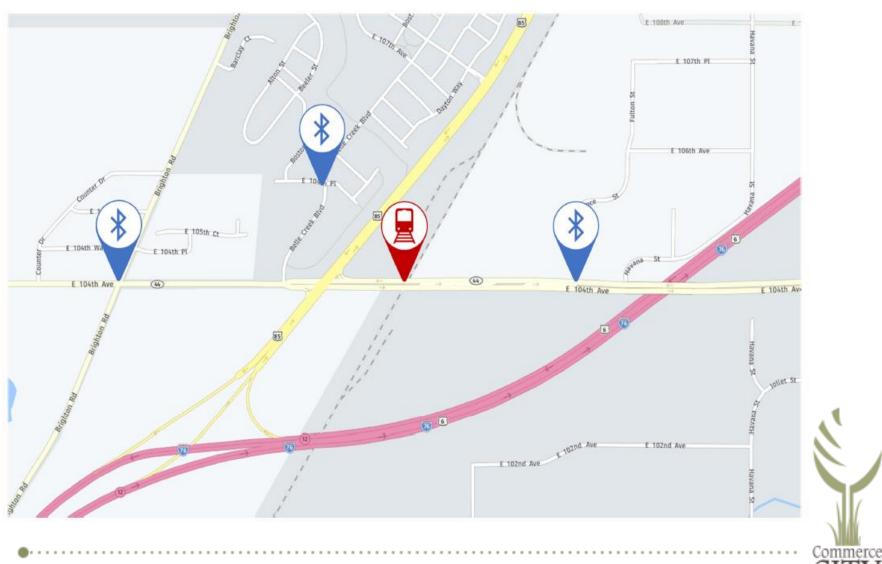
- A trackside sensor is installed at the railroad crossing
 - Measures when/how long the crossing is blocked

How It Works

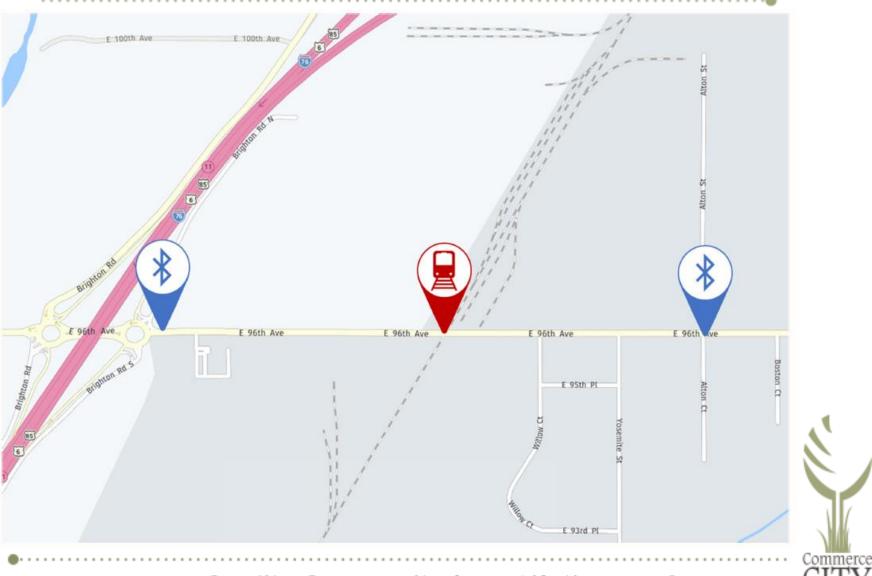
- Bluetooth sensors are installed on either side of the railroad track
 - Measures vehicle travel time with and without a crossing blockage
- Software analyzes data from Bluetooth & train detection sensors producing detailed traffic congestion report

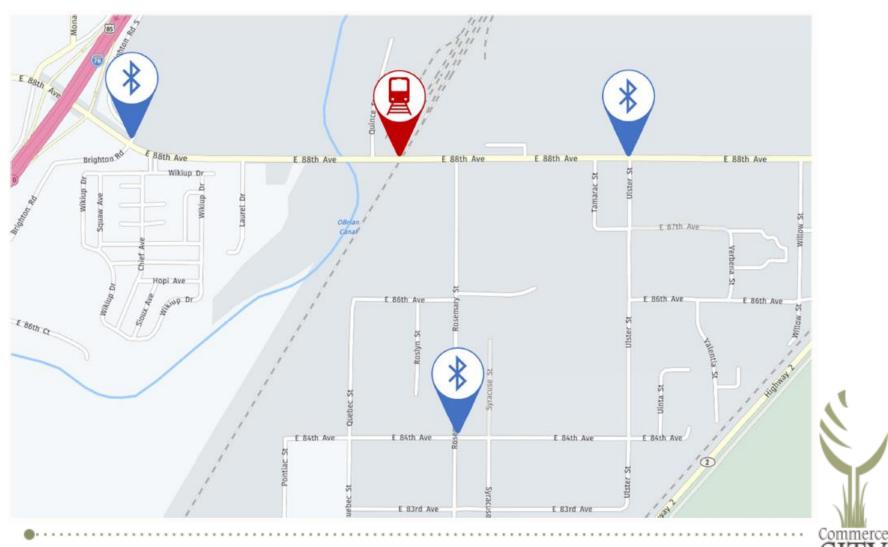


Notional Locations


Table 1: UPRR – Notional Rail Crossing Locations

Location #	Roadway Name	No of OD Pairs	Origin-Destination Pair*		
1	120th Ave	1	US 85 - Potomac Street		
2	104th Ave	2	Brighton Rd - 104th Ave		
			Belle Creek Blvd - 106th Place		
3	96th Ave	1	I-76 - Alton Street		
4	88th Ave	2	Brighton Rd - Ulster Street		
			I-76 - Rosemary Street		
5	72nd Ave	2	Dahlia Street - Hwy 2		
			Dahlia Street - Ivy Street		
NOTE: Traffic delay	is measured in both direction	ons of the OD Pair			


120th at Union Pacific Railroad


104th at Union Pacific Railroad


96th Ave at Union Pacific Railroad

88th Ave. at Union Pacific Railroad

72nd Ave. at Union Pacific Railroad

Commerce

Estimated Cost (Initial Phase)

Table 2: Fee Schedule

Item	Unit Cost	Qty	Payment Frequency	<u>Price</u>
Train Detection Sensor	\$5,000	2	One-time	\$10,000
Bluetooth Sensor	\$5,000	6	One-time	\$30,000
Solar Kit	\$1,000	2	One-time	\$2,000
Congestion Analytics Software License	\$5,000	1	Annual	\$5,000
Rail Crossing Locations	\$2,500	6	Per Study	\$15,000
Origin-Destination Pairs	\$2,500	8	Per Study	\$20,000
Wireless Data Plans	\$600	8	Annual	\$4,800
Shipping & Handling	\$200	5	One-time	\$1,000
SUB-TOTAL				\$87,800
DISCOUNTS				
Complimentary Traffic Delay Study	\$5,000	1		-5,000
TOTAL				\$82,800

NOTE: Does not include installation - about \$18,000 for six locations

Funding

- Railroad Intelligent Transportation System budget is \$160,000 for 2019
 - Equipment Purchase/Initial Data Collect Phase \$100K
 - Targeted Pilot Application \$50K
- Future year budget(s) to implement options addressing railroad crossing related delays 2020/\$100K
 - Driver Information Systems
 - Real-time Message Boards/Texts
 - Signal Timing
 - Grade Separation
 - At 120th, 104th, & 88th

- Commerce

Next Steps

- Contract with provider
- Install two (2) Train Detector Sensors with Solar Kits and six (6) Bluetooth Sensors with Solar Kit
 - Train Detection Sensor will measure Railroad Crossings Blockages
 - Bluetooth Sensors will provide travel time delays between sensors
- Monitor Crossing(s) 6 to 10 weeks per crossing
- Analyze data determine mitigation options/tactics
- Implement pilot program at designated crossing(s)

Questions & Discussion