Planning and Referral Agency Comment Letters - presented in reverse chronological order

Summary

1. Planning comments
a. Fees applied to property to date
b. Revisions to documents
c. For more information see pages 1-6
2. Public Works comments
a. Revisions to documents
b. For more information see pages 7-300
i. Annexation/vacation plat and survey information pages 13-28
ii. Traffic study pages 29-142
iii. Drainage letter and reports pages 143-300
3. South Adams Fire District
a. Fees applied to property
b. No other comments
c. For more information see pages 301-302
4. South Adams County Water and Sanitation District
a. General comments responses
b. No special conditions
c. For more information see pages 303-304
5. Tri-County Health Department
a. Informational comments
b. For more information see pages 305-312
6. GIS
a. Revisions to documents
b. For more information see pages 313-316
7. Adams County
a. No concerns
b. For more information see page 317
8. Adams 14 School District
a. Have capacity for students
b. For more information see pages 318-323
9. Parks, Recreation, and Golf Department
a. Fees applied to property - revised as more information provided
b. City plans for trail
c. For more information see pages 324-325
10. The Farmers Reservoir and Irrigation Company
a. General comments
b. For more information see page 326
11. Xcel
a. No conflicts
b. No easements in scope of work
c. For more information see pages 327-332

4/26/2022

Scott McFadden
Prospect LLC
4100 East lliff Avenue, \#20
Denver, CO, 80205
Re: Comments for Case AN-265-22, Z-984--22, V-94-22

To Scott McFadden

The submitted applications for Annexation, Zone Change, and Vacation have been reviewed and discussed by the Development Review Team (DRT) and staff has visited the property to assess the site. As a result, the following items were identified for your team to address:

DRT General Comments:

- Once the items identified in this comment letter have been addressed, staff is generally supportive of your requests.
- Staff has referenced certain sections of our Land Development Code (LDC) in this comment letter and our enclosed redlines. A copy of this document is available at http://www.c3gov.com/LDC.
- Staff would encourage you to review Article IX of the LDC in order to get a sense of some of the fees that are associated with development. Please note: there may be additional fees associated with your development that are not identified in Article IX.
- The city encourages sustainable development and green building practices to help balance growth with protection of our region's valuable natural resources. Staff encourages your team to utilize sustainable development practices in regards to site design, energy efficiency, water conservation, waste minimization, pollution prevention, and the use of resource efficient materials in the development of this site.
- Continue to work with the Farmers Reservoir and Irrigation Company (FRICO) to address all comments and requirements identified in comment letter from FRICO, dated April 6, 2022.
- It is important to note that while staff has made every effort to make this comment letter allinclusive, there may be additional comments on future submittals that have not been identified here based on the changes to your plans.

Planning Division - Comments provided by Anita Riley

ㅁ General Comments

- To date, the following fees have been, or will be, applied to the subject property:

1. South Adams County Fire District (SACFD) impact fee: $\$ 250 /$ dwelling unit;
2. Commerce City park fee-in-lieu: $\$ 62,379$; and
3. Adams 14 School District school land dedication fee-in-lieu: $\$ 396.24 /$ dwelling unit.

- Be aware that the GSA will assign 25% of the required ERUs for water resources at the subject property. The applicant must work with the South Adams County Water and Sanitation District to obtain the remainder

- Annexation

- Comments related to Annexation Information Sheet:

4. No further comments from the Planning Division.

- Comments related to Pre-Annexation Agreement:

5. Staff is working with the applicant to complete the pre-annexation agreement.

ㅁ Zone Change

- Comments related to Zone Change Document:

6. Be aware that the approval criteria for a setback variance for accessory structures at development plan can be difficult to meet, particularly the hardship requirement. You may want to consider the minor modification process that would allow for a 50% decrease in setback requirement.

- Vacation
- General Comments:

7. No further comments from the Planning Division.

Please see additional enclosed redlines as well as comment letters from the following referral agencies:

- FRICO - Cheryl Plucker
- Parks, Recreation, and Golf - Traci Ferguson
- Public Works - Lee Alverson
- South Adams County Fire District - Savannah Elliott

Please be aware that there are multiple comments from the Public Works Department, provided over a number of days. Due to the expedited nature of this application, these and other comments have been forwarded to you. The comments may or may not have already been addressed. Please review and address all new and/or outstanding comments.

Next Steps:

Please include the following information in your next submittal or as final documents:

- Digital copies of all revised documents;
- Two paper copies of all revised documents and
- Digital copies of a response letter addressing each item above as well as the comments made by each referral agency.

Each subsequent submittal undergoes a four-week review cycle. Please feel free to contact me via email at ariley@c3gov.com or by phone at 303.329.3716 to further discuss any of these comments.

Sincerely,

Anita Riley, City Planner

Enclosures

3/16/2022

Scott McFadden
Prospect LLC
4100 East lliff Avenue, \#20
Denver, CO, 80205
Re: Comments for Case AN-265-22, Z-984--22, V-94-22

To Scott McFadden

The submitted Zone Change application has been reviewed and discussed by the Development Review Team (DRT) and staff has visited the property to assess the site. As a result, the following items were identified for your team to address:

DRT General Comments:

- The City would like to thank Prospect LLC for a very professional submittal.
- Once the items identified in this comment letter have been addressed, staff is generally supportive of your requests.
- Staff has referenced certain sections of our Land Development Code (LDC) in this comment letter and our enclosed redlines. A copy of this document is available at http://www.c3gov.com/LDC.
- Staff would encourage you to review Article IX of the LDC in order to get a sense of some of the fees that are associated with development. Please note: there may be additional fees associated with your development that are not identified in Article IX.
- The city encourages sustainable development and green building practices to help balance growth with protection of our region's valuable natural resources. Staff encourages your team to utilize sustainable development practices in regards to site design, energy efficiency, water conservation, waste minimization, pollution prevention, and the use of resource efficient materials in the development of this site.
- It is important to note that while staff has made every effort to make this comment letter allinclusive, there may be additional comments on future submittals that have not been identified here based on the changes to your plans.

Planning Division - Comments provided by Anita Riley

- Annexation

- General Comments:

1. At this time, the office of the City Attorney has not provided comments regarding this case. Once planning obtains those comments, they will be provided to the applicant for review.

- Comments related to Annexation Petition:

1. Please provide an Exhibit A: Legal Description Attached to the Petition with header/title of Exhibit A with the next submittal.
Comments related to Annexation Information Sheet:
2. Please revise information sheet to list all special districts of which the subject property is a part.

- Comments related to Pre-Annexation Agreement:

1. Staff will work to create the language for the pre-annexation agreement.

- Comments related to Annexation Map:

1. All sheets: This annexation has been assigned case number AN-265-22. Please update the title in the annexation map on both sheets to reflect this on the next submittal.
2. Sheet 1: The basis of bearings statement must state that the bearings are based on Commerce City Control Diagram.
3. Sheet 1: The Reception No. line should be located at the lower right hand corner of the sheet, if possible.

- Zone Change

- General Comments:

1. The Commerce City Station Area Master Plan designates the property as high density residential in the future land use plan. The proposed $R-3$ zoning is consistent with this future land use designation.
2. It also indicates a multimodal access that bisects the property at $71^{\text {st }}$ Avenue at terminates at the O'Brien Canal. An easement must be provided to the City on the plat at the subdivision application stage.
3. Fifteen percent of all usable land will need to be developed as private parks or open space in order meet the zone change approval criteria. Please confirm in a revised narrative that this requirement will be met.
4. Please provide a revised narrative for the proposed zone change and make sure to emphasize the desired zoning and the proposed uses that are envisioned for that site.

- Comments related to the Narrative:

1. Please revise the narrative to reflect a zone change to Multi-Family ($R-3$).

- Comments related to Zone Change Document:

1. This zone change has been assigned case number Z-984-22. Please update the title in the annexation map to reflect this on the next submittal.
2. Section 21-4310 of the LDC requires a 30 -foot side yard setback where the side in on a street. The applicant may provide a second minimum side yard dimension to reflect this requirement or revise the existing minimum requirement shown since there is no interior side to the lot.
3. Setback requirements for accessory structures are listed in Section 21-5450 of the LDC. Please revise the document to specify this section and identify the types of accessory structures to which the setbacks will be applied.
4. A minor modification will be required to reduce the parking requirements to 50%. A parking study will be required to verify that amount of reduction in parking is sustainable.
5. Be aware that the request for Modification 1 would more likely be supported if a maximum number of accessory structures as well as the type of structures were identified.
6. Applications must be submitted for all minor modifications.

- Vacation
- General Comments:

1. Narrative
2. A vacation plat was not part of the original submittal, however, a draft vacation plat was provided March 10, 2022. The following revisions must be made:

- Provide the width of the right-of-way at Colorado at various locations, with particular attention to width at the location of the requested vacation. Please note whether the dimensions are existing or proposed.
- Delineate and note setbacks and easements on the subject property.
- Indicate the location of 71 ${ }^{\text {st }}$ Avenue on the east side of Colorado Boulevard.

3. Provide no objection letters from Xcel Energy, Qwest Communications, Comcast Cable, and the Commerce City Public Works Department with the next submittal.

Please see additional enclosed redlines as well as comment letters from the following referral agencies:

- FRICO - Scott Edgar and Victoria Schumm
- GIS
- Public Works - Lee Alverson
- South Adams County Fire District - Savannah Elliott
- South Adams County Water and Sanitation District - Jeff Nelson
- Tri County Health Department - Annemarie Heinrich Fortune
- Xcel Energy - Adam Hutchinson and Donna George

Next Steps:

Please include the following information in your next submittal:

- Digital copies of the revised narrative, Annexation Information Sheet, Annexation Map, and Vacation Plat; and
- Digital copies of a response letter addressing each item above as well as the comments made by each referral agency.

Each subsequent submittal undergoes a five-week review cycle. Please feel free to contact me via email at ariley@c3gov.com or by phone at 303.329.3716 to further discuss any of these comments.

Sincerely,

Anita Riley, City Planner

Enclosed:

INTEROFFICE MEMORANDUM

TO: Anita Riley, Planner
FROM: Lee Alverson, Development Review Engineer
DATE: June 8, 2022
SUBJECT: AN-265-22 Z-984-22 V-94-22; 7001 Colorado Blvd, $2^{\text {nd }}$ Comments

Public Works has reviewed the above submittal and has the following comments.

Annexation Map

1. No additional comments.

Right of Way Vacation

1. No additional comment.

Drainage Report:

1. A drainage report will be required to accompany future development permits. Prepare the report using the latest City of Commerce City Storm Drainage Design and Technical Criteria Manual.
2. Additional comments will be made when the drainage report is reviewed.

Traffic Study:

An updated traffic study is still being drafted by the developer's design team. Until the City has an opportunity to review the revised study, the follow statements from the first review are still valid. The traffic study shall be submitted for review and approval with the future development permit.

1. Revise the traffic study to include an analysis of the intersections of $72^{\text {nd }} /$ Colorado and $68^{\text {th }} /$ Colorado. Discuss the impacts to Colorado Boulevard from this development.
2. The north bound left turn lane at the site access may require the reconstruction of Colorado Boulevard. Demonstrate that the left turn lane will not eliminate or adversely affect the existing bicycle lanes on Colorado Blvd.
3. The City will be improving Colorado Blvd from East $70^{\text {th }}$ Avenue to East $68^{\text {th }}$ Avenue with a roadway section similar to the existing section on Colorado Blvd fronting this property. This study should reference this upcoming project. If you have questions, contact Mike McGoldrick. This would be of interest to this
development as it will provide a walking route to Alsup Elementary School on $68^{\text {th }}$ Ave.
4. Revise the study to include a discussion of how pedestrian traffic will use the proposed and existing improvements to get to the neighborhood schools and the RTD station.

For Information:

1. This site is not currently in an area that has an assessed Road Impact Fee or Drainage Impact Fee.
2. Please provide a comment response letter with your next submittal.

Civil Plans and Grading Permit:

1. After this site is annexed and a development permit is reviewed Civil Construction plans including Erosion and Sediment Control (ESC) Plans will need to be submitted directly to Public Works for review.
2. As part of the review of the ESC Plans, and in preparation for a Grading Permit, the City requires that a Grading Plan Review Application be completed, and a review fee be paid.

Developer's Agreement:

1. A Developer's Agreement will be required to be executed prior to approval and recordation of a subdivision plat for this development.

If you have any questions, please call me at extension 8176.
ec: Joe WIlson, Director of Public Works
Chris Hodyl, P.E., Development Review Manager

INTEROFFICE MEMORANDUM

TO: Anita Riley, Planner
FROM: Lee Alverson, Development Review Engineer
DATE: April 18, 2022
SUBJECT: AN-265-22 Z-984-22 V-94-22; 7001 Colorado Blvd, $2^{\text {nd }}$ Comments

Public Works has reviewed the above submittal and has the following comments.

Annexation Map

1. See attached red lines for annexation comments.

Right of Way Vacation

1. The basis of bearing is inaccurate. Basis of bearing for the plans must tie and be rotated to an established point in the Commerce City Control Point System. Benchmark locations, elevations and bearings may be obtained from the engineering department of Public Works. Contact Rose Clawson for more information.

Drainage Report:

1. A drainage report will be required to accompany future development permits. Prepare the report using the latest City of Commerce City Storm Drainage Design and Technical Criteria Manual.
2. Additional comments will be made when the drainage report is reviewed.

Traffic Study:

An updated traffic study is still being drafted by the developer's design team. Until the City has an opportunity to review the revised study, the follow statements from the first review are still valid.

1. Revise the traffic study to include an analysis of the intersections of $72^{\text {nd }} /$ Colorado and $68^{\text {th }} /$ Colorado. Discuss the impacts to Colorado Boulevard from this development.
2. The north bound left turn lane at the site access may require the reconstruction of Colorado Boulevard. Demonstrate that the left turn lane will not eliminate or adversely affect the existing bicycle lanes on Colorado Blvd.
3. The City will be improving Colorado Blvd from East $70^{\text {th }}$ Avenue to East $68^{\text {th }}$ Avenue with a roadway section similar to the existing section on Colorado Blvd
fronting this property. This study should reference this upcoming project. If you have questions, contact Mike McGoldrick. This would be of interest to this development as it will provide a walking route to Alsup Elementary School on $68^{\text {th }}$ Ave.
4. Revise the study to include a discussion of how pedestrian traffic will use the proposed and existing improvements to get to the neighborhood schools and the RTD station.

For Information:

1. This site is not currently in an area that has an assessed Road Impact Fee or Drainage Impact Fee.
2. Please provide a comment response letter with your next submittal.

Civil Plans and Grading Permit:

1. After this site is annexed and a development permit is reviewed Civil Construction plans including Erosion and Sediment Control (ESC) Plans will need to be submitted directly to Public Works for review.
2. As part of the review of the ESC Plans, and in preparation for a Grading Permit, the City requires that a Grading Plan Review Application be completed, and a review fee be paid.

Developer's Agreement:

1. A Developer's Agreement will be required to be executed prior to approval and recordation of a subdivision plat for this development.

If you have any questions, please call me at extension 8176.
ec: Joe WIlson, Director of Public Works Chris Hodyl, P.E., Development Review Manager

INTEROFFICE MEMORANDUM

TO: Anita Riley, Planner
FROM: Lee Alverson, Development Review Engineer
DATE: \quad March 4, 2022
SUBJECT: AN-265-22 Z-984-22 V-94-22; 7001 Colorado Blvd, Annexation $1^{\text {st }}$ Comments

Public Works has reviewed the above submittal and has the following comments.

Annexation Map

1. Provide an annexation map for review.
2. Additional comments will be made when the annexation map is reviewed.

Right of Way Vacation

1. Provide a right of way vacation map for review.
2. Additional comments will be made when the annexation map is reviewed.

Drainage Report:

1. Provide a drainage report with the next submittal. Prepare the report using the latest City of Commerce City Storm Drainage Design and Technical Criteria Manual.
2. Additional comments will be made when the drainage report is reviewed.

Traffic Study:

1. Revise the traffic study to include an analysis of the intersections of $72^{\text {nd }} /$ Colorado and $68{ }^{\text {th }} /$ Colorado. Discuss the impacts to Colorado Boulevard from this development.
2. The north bound left turn lane at the site access may require the reconstruction of Colorado Boulevard. Demonstrate that the left turn lane will not eliminate or adversely affect the existing bicycle lanes on Colorado Blvd.
3. The City will be improving Colorado Blvd from East $70^{\text {th }}$ Avenue to East $68^{\text {th }}$ Avenue with a roadway section similar to the existing section on Colorado Blvd fronting this property. This study should reference this upcoming project. If you have questions, contact Mike McGoldrick. This would be of interest to this development as it will provide a walking route to Alsup Elementary School on $68^{\text {th }}$ Ave.
4. Revise the study to include a discussion of how pedestrian traffic will use the proposed and existing improvements to get to the neighborhood schools and the RTD station.

For Information:

1. This site is not currently in an area that has an assessed Road Impact Fee or Drainage Impact Fee.
2. Please provide a comment response letter with your next submittal.

Civil Plans and Grading Permit:

1. After this site is annexed and a development permit is reviewed Civil Construction plans including Erosion and Sediment Control (ESC) Plans will need to be submitted directly to Public Works for review.
2. As part of the review of the ESC Plans, and in preparation for a Grading Permit, the City requires that a Grading Plan Review Application be completed, and a review fee be paid.

Developer's Agreement:

1. A Developer's Agreement will be required to be executed prior to approval and recordation of a subdivision plat for this development.

If you have any questions, please call me at extension 8176.
ec: Joe WIlson, Director of Public Works
Brent Soderlin, P.E., City Engineer
Chris Hodyl, P.E., Development Review Manager

LEGAL DESCRIPTION \& DEDICATION:

 ALEMION 1 AYP AFOUNPD 2 "LLEGBBLE ALLUMINUM CAP.
 THE NORTH LINE OF SAID SECTION 1 , 89953 5 '22" W, A DISTANCE OF 30.00 FEET TO A POINT ON TH
 THE POINT OF BEGINIING;

 LINE;

2. N $89^{\circ} 5^{\circ} 0^{\circ} 3^{\prime \prime}$ W, A DISTANCE OF 136.41 FEET

RADUS OF 17.60 FEET, AN ARC CENGTH
DISTANCE OFN $81^{1} 311^{1010} W$, 49.67 FEET;

CONTAINING AN AREA OF 177,333 SQUARE FEET OR 4.071 ACRES, MORE OR LESS;
HAVE BY THESE PRESENTS LAID OUTT PLATTED AND SUBDVIIDED THE SAME INTT LOTS AND BLOCKS AS
SHOWN ON THIS PLAT UNDERTHE NAME AND STYLE OF FOO1 COLORADO AND DO HEREBY GRANT TO THE

 AND DETENTION POND AREAS, FLLODWAY AND LLL
PURPOSES AS DETERMMED BY COMMERCE CITY.

EXECUTED THIS DAY OF \qquad AD 20 _
$\overline{\text { OWNER(S') SIGNATURE AND PRINTED NAME }}$
$\overline{\text { MORTGAGEE OR LIEN HOLDER(S') SIGNATURE AND PRINTED NAME }}$

ownershe and title certhcat

 THOSE SHOWN ON THIS PLAT.

$\overline{\text { AUTHORIZED SIGNATURE AND PRINTED NAME }} \quad \overline{\text { DATE }}$

LIEN HOLDER(S):
THE UNDERSIGNED, BEENG THE HOLDER OF A DEED OF TRUST ENCUMBERING THE PROPERTY
DESCRIBED IN THE PLAT OF OF
STATE OF COLORADO \qquad Authorized signature and printed name

notary seal

THE FOREGOING DEDICATION WAS ACKNOWLEDGE BEFORE ME TH \qquad day of \qquad A.D.
state of:
county of
CITY OF:
MY COMMISSION EXPIRES:
notary public:

7001 COLORADO

A PORTION OF THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 1, TOWNSHIP 3 SOUTH RANGE 68 WEST OF THE 6TH PRINCIPAL MERIDIAN CITY OF COMMERCE CITY, COUNTY OF ADAMS STATE OF COLORADO

Notice is hereby given:

ANY CONSTRUCTION ACROSS AN EXISTING SUBDIVIIION LOT LINE II IN VIOLATION OF THE
SUBDIVIION REGULATON OF THE CITY, EXCEPT AS HEREIN AUTHORIZD.

3. THIS PLAT DOES NOT ESTABLISH WATER AVILABBLITY FOR THE SUBJJCT PROPERTY. WATER AND
WASTEWATER SERVICE AS PROVIDED BY THE SOUTH ADAMS COUNTY WATER AND SANITATION DISTRICT. INVESTIGATION OF THE CURRENT WATER AVALLABLLTY FOR THE PROPERTY AND ACQUIIITION OF ANY ADDTIIONAL WATER REQURED FOR DEVELOPMENT OF THE PROPERTY SHALL
BE THE SOLE RESPONSIBLTY OF THE DEVELOPER. ITS SUCCESSOR AND ASSIGNS. DEVELOPMENT

THE STORM WATER DETTNTION AREA SHOWN HEREON SHALL BE CONSTRUCTED AND MANTAINED
BY THE OWNER AND THE SUBSEQUENT OWNERS, HEIRS, SUCCESSORS AND ASSIGNS. IN THE BY THE OWNER AND THE SUBSEQUENT ONNERS, HEIRS, SUCCEESSRS AND ASSIGNS. IN THE
EVENT THAT SAID CONSTRUCTION AND MAINTENANCE IS NOT PERFORMED BY SAI OWNER THE CITY OF COMAERENCITY SHALL HAVE THE RIGHT TO ENTER SUCH AREA AND PERFORM THE
NECESSRY WORK THE COST OF WHICH, SAID OWER, HERS, SUCCESSORS, AND ASSIGNS NECESSARY WORK, THE COST
AGRESS TO PAY UPON BILIING.
NO BULDING OR STRUCTURE WILL BE CONSTRUCTED IN THE DETENTION AREA AND NO CHANGES
OR ALTTRATIONS AFFECTING THE HYORAULIC CHARACTERISTICS OF THE DETENTION AREA WILL OR ALTERATIONS AFFECTING THE HYODAULIC
BE MADE WITHOUT THE APPROVAL OF THE CITY.

CITY COUNCIL CERTIFICATE:

APPRoved by the city council of the city of commerce city
THIS___DAY OF AD 20 _.
ATTEST:
$\overline{\text { CITY CLERK }}$
MAYOR

ADAMS COUNTY CLERK AND RECORDER'S CERTIFCATE

THIS PLAT WAS FIIED FOR RECORD IN THE OFFICE OF THE ADAMS COUNTY CLERK AND RECORDER, IN
THE STATE OF CLLORADO.
at M. Onthe day of A.D. 20 _

CLERK AND RECORDER: \qquad
\qquad
By DEPUTY:
reception no.

SURVEYORS CERTIFICATION:
D. DARREN R. WOLTERSTORFF, A REGISTERED LAND SURVEYOR, REGISTERED IN THE STATE OF
COORADO DO HEREBY CERTIFY THAT THERE ARE NO ROADS PIPELINES, IRRIGATON DITCHES, THEREASEMENTS IN EVIDENCE OF KNOWN BY ME TO EXIST ON OR ACROSS THE HEREIN BEFORE DESCRIBED PROPERTT EXCEPT AS SHOWN ON THS P PAT I I FURTHER CERTIFY THAT HAVE PERRORMED

SARREN R. WOLTERSTORFFF, P.LSS 38281 FOR AND ON BEHALFOF:
 ORR AND ON BEHALF OF: KIMLEY-HORN AND ASSOC

582 SOUTH ULSTER STREET,

PRELIMANARY

4582 SOUTH ULSTER STREET,
SUITE 1500, DENVER, COLORADO 80237
THIS DOCUMENT SHALL NOT BE RECORDED FOR
ANY PURPOSE AND ANY PURPOSE AND
SHALL NOT BE USED OR SHALLNOT BE USED OR
VIEWED OR RELIED
UPON AS A FINAL UPONASAFINAL
SURVEYDOCUMENT

City staff certificate:
APPROVAL BY THE CITY ENGINEER OF THE CITY OF COMMERCE CITY
THIS___ DAY OF \qquad AD 20 _

CITY ENGINEER
APPROVAL BY THE DIRECTOR OF COMMUNITY DEVELOPMENT OF THE CITY OF COMMERCE
CITY THIS ___ DAY OF , AD 20_ .

IRECTOR, COMMUNITY DEVELOPMENT

6. THIS PLAT DOES NOT CONSTITUTE ATILLE SEARCH BY KIILLEY-HORN AND ASSOCIATES, INC. TO COMPATIBLITTY OF THIS DESCRIPTION WITH THAT OF ADJACENT TRACTS, OR VERIFY EASEMENTS OF KIMLEY-HORN AND ASSOCIATES, INC. RELIED UPON TITLE COMMITMENT NO. 1334156 , EFFECTIVE DATE JULY 31, 2021 AT 8:00 A.M. PRE RARED BY STEWART TTLLE COMPANY.
EXCEPT AS SPECIFICALLY STATED OR SHOWN ON THIS PLAT, THIS SURVEY DOES NOT PURPORT TO
REFLECT ANY OF THE FOLOWING WHICH MAY BE APPLICABLE TO THE SUBJECT TRACT RESTRICTIVE COVENANTS, SUBDIVIIION RESTRICTIONS, ZONING OR OTHER LAND-USE

THE WORD "CERTIFY" OR "CERTIFICATE" AS SHOWN AND USED HEREON MEANS AN EXPRESSION Of
PROFESSIONAL OPINION REGARDING THE FACTS OF THE SURVEY AND DOES NOT CONSTITUTE A WARRANTY OR GUARANTEE, EXPRESSED OR IMPLIED.
THIS PROPERTY IS LOCTED WITHIZ
 ANY FLOOD HANARD NUMEER 08001 6 G604H, MAP EFFECTVE DATE MARCH 5, 2007. THE ACCURACY O ANY FLOOD HAZARD DATA SHOWN ON THIS SURVEY IS SUBJECT TO MAP SCALE UNCERTANTY AND
TO ANY OTHR UNCERTANTY IN LOCATION OR ELEVATION ON THE REFERENCED FLOOD
INSURANCE RATE MAPS.

Kimley»)Horn

AN-265-22 ANNEXATION MAP
 TO THE CITY OF COMMERCE CITY, COLORADO

FOR ANNEXATION PURPOSES ONLY

ANNEXATION DESCRIPTION:
A PARCEL OF LAND LOCATED IN THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 1 , TOWNSHIP 3 SOUTH, RANGE 68 WEST OF THE GTH PRINCIPAL MERIDIAN, ADAMS BEARHMGS ARE BASED ON THE EAST LINE OF THE NORTHEAST QUARTER OF THE NORTHEAST
, TOWNSHIP 3 SOUTH, RANGE 68 WEST OF THE TTH P.M., BEARING $\$$ ded
parcel a:
COMMENCING AT THE NORTHEAST CORNER SAD SECTION 1; THENCE ONANASSUMED FEET TO A POINT ON THE WESTERLY RIGHEO ALONG SADD WESTERLY RIGHT-OF-WAY LINE, S $00^{\circ} 00000$ " W, A DISTANCE OF 253.52 FEET; FOOT RIGHT-OF-WAYDEDICATION CONVEYED IN DEED RECORDED APRIL 11 , 2000 IN BOOK 6093 FOOO RIGHT-OF-WAY DEDICATION CONVEYED IN NEED RECORDED APRIL 11, 2000
AT PAGE 635 OF THE ADAMS COUNTY RECORDS, AND THE POINT OF BEGINNING;
THENCE ALONG SAID WESTERLY RIGHT-OF-WAY DEDICATION LINE, S $00^{\circ} 0^{\circ} 0^{\circ} 0^{\prime \prime}$ W, A DISTANCE OF 1020.62 FEET TO A POINT ON THE NORTH LINE OF THE PROPERTY AS DESCRIBED IN FINAL RULE AND ORDER RECORTY RECORDS; THENCE ALONG SAID NORTH LINE THE FOLOWING THREE (3)
ADAMS COU
COURSES:

1. S $69^{\circ}{ }^{\circ} 55^{246 " W}$ " W, A DISTANCE OF 16.61 FEET;
2. $89^{\circ} 50^{\prime 3}$ " W A DISTANCE OF 136.41 FEET TO A POINT OF CURVATURE
 DISTANCE OF N $81^{\circ} 31^{\prime 1} 10 \mathrm{l}$ " W , 49.67 FEET

CONTAINING AN AREA OF 168,133 SQUARE FEET OR 3.860 ACRES, MORE OR LESS.
TOGETHER WITH
REVISE LEGAL TO BE ONE AREA
parcel b:
TO INCLUDE BOTH PACEL AND
THE ROW FOR 2017000048567
COMMENCING AT THE NORTHEAST CORNER SAID SECTION 1 ; THENCE ON AN ASSUMED
BEARING ALONG THE NORTH LINE OF SAID SECTON 1 N $89^{\circ} 5323^{2}$ W W A DISTANCE OF 30.0

 THENCE $54^{\circ 3} 35^{\circ} 2^{\prime \prime}$ W, A DISTANCE OF 12.27 FEET TO A POINT ON THE WESTERLY LINE OF A 10
FOOT RIGHT-OF-WAY DEDICATION CONVEYED IN DEED RECORDED APRLL 11 , 2000 IN BOOK 6093 ATPAGE 635 OF THE ADAMM COUNTY RECORDS; THENCE CONTINUNG ALONG THE LAST
 DISTANCE OF
BEGINNING;
THENCE S $39^{\circ} 15^{\prime} 46^{\prime \prime} \mathrm{W}$, A DISTANCE OF 85.08 FEET. THENCE S $06^{\circ} 23^{\prime} 3^{\prime \prime}$ " W, A DISTANCE OF 16306

 CONTAINING AN AREA OF 5,781 SQUARE FEET OR 0.133 ACRES, MORARY LESS
TOTAL ANNEXATION AREA CONTAINS 173,914 SQUARE FEET OR 3.993 ACRES, MORE OR LESS EXECUTED THIS \qquad dAy of \qquad AD 20
$\overline{\text { OWNER(S') SIGNATURE AND PRINTED NAME }}$
$\overline{\text { MORTGAGEE OR LIEN HOLDER(S') SIGNATURE AND PRINTED NAME }}$
A PORTION OF THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 1, TOWNSHIP 3 SOUTH

RANGE 68 WEST OF THE 6TH PRINCIPAL MERIDIAN
CITY OF COMMERCE CITY COUNTY OF ADAMS

STATE OF COLORADO

aty council certificat

APPROVAL BY CITY OF COMMERCE CITY, CITY COUNG
THIS___DAY OF \qquad
ATTEST:
ITY CLERK
$\overline{M A Y O R}$
adams county clerk and recorder's certificate:
THIS MAP WAS FILED FOR RECORD IN THE OFFICE OF THE ADAMS COUNTY CLERK AND
RECORDER, IN THE STATE OF COLORADO, AT____M. ON THE ___ DAY OF AY OF \qquad A.D. 20

DEPUTY COUNTY CLERK AND RECORDER
RECEPTION No \qquad
notes:
According to colorado law you must commence any legal action based upon ANY DEFECT IN THIS SURVEY WITHIN THREE YEARS AFTER YOU FIRST DISCOVER SUCH COMMENC
HEREON.
2. ANY PERSON WHO KNOWINGLY REMOVES, ALTERS OF DEFACES ANY PUBLIC LAND SURVEY MONUMENT OR LAND BOUNDARY MONUMENT OR ACCESSORY COMMITS A CLASS
TWO (2) MISDEMEANOR PURSUANT TO STATE STATUTE 18-4-508, C.R.S.
3. FIELD SURVEY WAS COMPLETED ON NOVEMBER 11, 2021
4. BEARINGS ARE BASED ON THE EAST LINE OF THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 1 , TOWNSHIP 3 SOUTH, RANGE 68 WEST OF THE 6 TH
P.M., BEARING 0 OO NORTHEAST CORNER OF SECTION 1 BY A FOUND 3-31/4" ALLMMINM CAP, STAMPED "RLS
24673", AND AS MONUMENTED AT THE NORTH SIXTENTH CORNER OF SECTION 1 BY A FOUND 1-1/4" ILLEGIBLE ALUMINUM CAP. COMMERCE CITY BASIS OF
5. ALL DIS
. 18 "W 2641.42
EXCEPT AS SPECIFICALLY STATED OR SHOWN ON THIS PLAT THS SURVEY DOES NO PURPORT TO REFLECT ANY OF THE FOLLOWING WHICH MAY BE APPLICABLE TO THE
SUBJECT TRACT: RESTRICTIVE COVENANTS, SUBDIVISION THER TRAC. RESTRICTIVE COVENANTS, SUBDIVIIION RESTRICTIONS, ZONING OR TITLE EVIDENCE.
7. THE WORD "CERTIFY" OR "CERTIFICATE" AS SHOWN AND USED HEREON MEANS AN
EXPRESSION OF PROFESSIONAL OPINION REGARDING THE FACTS OF THE SURVEY AND DOES NOT CONSTITUTE A WARRANTY OR GUARANTEE, EXPRESSED OR IMPLIED.

SURVEYORS CERTIFICATION:

THE ABOVE DESCRIBED LAND IS CONTIGUOUS TO THE CITY OF COMMERCE CITY AND MEETS THE REQUIREMENTS SET FORTH IN CRS 31-12-104-(1)(A) THAT ONE-SIXTH OR MORE OF THE

Contiguity statement: REVISETO
TOTAL PERIMETER OF AREA CONSIDERED FOR ANNEXATIO
ONE-SIXTH OF THE TOTAL PERIMETER OF AREA = 392.57^{\prime}

ONE-SIXTH OF THE TOTAL PERIMETER OF AREA $=392.57$
ERIMETER OF THE AREA CONTIGOUS WITH EXISTING CITY LIMITS $=1,223.49$ THE TOTAL CONTIGUOUS PERIMETER IS 52%, WHICH MEETS OR EXCEEDS THE $1 / 6$ AREA
TEQUED.

UURSUANT TO COLORADO STATE BOARD OF LICENSURE FOR PROFESSIONAL LAND
SURVEYORS RULE 6.2.2 THE UNDERSIGNED FURTHER CERTIFIES THAT THIS MAP OR
SURVEYORS RULE 6.2.2 THE UNERSIGNED FURTHER CERTIFES THATTHIS MAP OR PLAT WAS PREPARED BY ME OR UNDER MY RESPONSIBLE CHARGE, IS ACCURATE TO THE BEST OF MY
NFORMATION, KNOWLEDGE AND BELIEF, IS IN ACCORDANCE WITH APLICABLE STANDARD
OF PRACTICE AND IS NOT

PRELIMINARY

THIS DOCUMENT SHALL
NOT BE RECORDED FOR
ANY PURPOSE AND
HALL NOT BE USED OR
VIEWED OR RELIED

DARREN R. WOLTERSTORFF, PLS 38281
OR AND ON BEHALF O KIILLEY-HORN AND ASSOCIATES, INC.
4582 SOUTH ULSTER STREET, SUITE 1500
DENVER COLORADO 80237
AARREN.WOLTERSTORFF@KIMLEY-HORN.COM

AN-265-22 ANNEXATION MAP
 TO THE CITY OF COMMERCE CITY, COLORADO

FOR ANNEXATION PURPOSES ONLY
A PORTION OF THE NORTHEAST QUARTER OF THE
NORTHEAST QUARTER OF SECTION 1, TOWNSHIP 3 SOUTH
RANGE 68 WEST OF THE 6TH PRINCIPAL MERIDIAN
CITY OF COMMERCE CITY COUNTY OF ADAMS STATE OF COLORADO

Case \#: AN-265-22

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{CITY OF COMMERCE CITY ANNEXATION MAP CHECKLIST} \\
\hline \& \& \multicolumn{2}{|l|}{COMPLIES} \& \& \\
\hline \& DESCRIPTION \& YES \& NO \& COMMENTS \& \\
\hline 1. \& The precise case number of the annexation (to be assigned by city), township, section, range, city, county, state, \& page numbers \& \(\square\) \& \(\square\) \& Case \# AN-265-22 \& P \\
\hline 2. \& Suitable scale (written and graphic) \& \(\square\) \& \& \& P \\
\hline 3. \& North arrow \& \(\square\) \& \(\square\) \& \& P \\
\hline 4. \& Annexed area shaded and annexed area marked "SITE" add bold arrow if needed \& \(\checkmark\) \& \(\square\) \& \& E \\
\hline 5. \& Location and width dimensions of all recorded and apparent rights-of-ways \& \(\square\) \& \(\checkmark\) \& widths of row \& E \\
\hline 6. \& Former City of Commerce City annexations with letters and numbers, which are contiguous with new annexations \& \(\square\) \& \(\checkmark\) \& Show former annexations \& E \\
\hline 7. \& City limit lines of abutting cities, and name(s) of cities \& \(\square\) \& \(\square\) \& Show City Limits Correctly the ROW for E 70th Ave nee \& E \\
\hline 8. \& Basis of bearings statement and labeled line on plat. State the basis of bearing and label on the drawing. Bearings shall be based on Commerce City Control Diagram. \& \(\square\) \& \(\square\) \& The Basis of Bearings from the Control Diagram \& E \\
\hline 9. \& Description of all monuments both found and set. \& \(\square\) \& \& \& E \\
\hline 10. \& \(18^{\prime \prime} \times 24\) " sheet with \(1 / 2^{\prime \prime}\) top, bottom and right-hand border, and 2 " border on the left-hand side. \& \(\square\) \& \(\square\) \& \& P \\
\hline 11. \& Significant man-made and natural features such as interstate highways, lakes, drainageways, railroads, etc. \& \(\square\) \& \(\square\) \& \& E \\
\hline 12.. \& All boundary lines shall have lengths to \(100^{\text {th }}\) of a foot. Surveyor to provide error of closure check (within 1:20,000). \& \(\square\) \& \(\square\) \& \& E \\
\hline 13. \& All section, range, and township lines that are within annexation boundary or border the property within 100 feet. \& \(\square\) \& \(\square\) \& \& E \\
\hline 14. \& All curve data shown in chart form on the face of the plat. Radii, internal angles, points of curvature, and lengths of all arcs shown. \& \(\square\) \& \(\square\) \& \& E \\
\hline 15. \& Vicinity map on the cover sheet, scale of \(1^{\prime \prime}=2000\) '. All roadways (by name) which are adjacent and within one mile from the peripheral boundaries of the platted land. \& \(\checkmark\) \& \(\square\) \& \& E \\
\hline 16. \& Total area in square feet and acres. \& \(\square\) \& \(\square\) \& \& E \\
\hline 17. \& \begin{tabular}{l}
Dedication shall be worded as follows: \\
ANNEXATION DESCRIPTION: \\
(INSERT LEGAL DESCRIPTION) \\
Executed this \(\qquad\) day of \(\qquad\) , AD 20 \(\qquad\) \\
Owner(s') Signature and Printed Name \\
Mortgagee or Lien Holder(s) Signature and Printed Name
\end{tabular} \& \(\square\) \& \(\square\)

\square \& Legal Description. When existing annexed boundary of city is reached, so state; at each subsequent call, so indicate; and when departing existing boundary of city, so state. \& P

\hline 18. \& Show the outline of area to be annexed with boldest line. \& \square \& \checkmark \& One overall boundary \& E

\hline 19. \& For all references show book, page, map number, etc., and place where publicly recorded for all references. \& \checkmark \& \square \& \& E

\hline
\end{tabular}

CITY OF COMMERCE CITY ANNEXATION MAP CHECKLIST					
		COM	IES		
	DESCRIPTION	YES	NO	COMMENTS	
20.	Show contiguous and coincident boundary by the following symbol: IIIIIIIII	\square	\square	E 70th Ave ROW has not been annexed yet please include with this annexation.	E
21.	Include this statement within the Surveyor's Certification for the annexation map: The above described land is contiguous to the City of Commerce City and meets the requirements set forth in CRS 31-12-104-(1)(a) that one-sixth or more of the perimeter to be annexed is contiguous with the annexing municipality. Contiguity Statement: - Total perimeter of area considered for annexation $=$ - One-sixth of total perimeter of area $=$ \qquad - Perimeter of the area contiguous with existing city limits = \qquad The total contiguous perimeter is \qquad $\%$, which meets or exceeds the $1 / 6$ area required. Signature and printed name PLS No. \qquad (seal and date) \qquad Address \qquad	\square	\square	Format the Contiguity Statement as shown on the Checklist with title. Recalculate with single area.	P
22.	The following certificate of City Council shall be added and worded as follows: CITY COUNCIL CERTIFICATE: Approval by City of Commerce City, City Council this day of _, A.D._. Attest: City Clerk Mayor	\square	\square		P

CITY OF COMMERCE CITY ANNEXATION MAP CHECKLIST					
		COMPLIES			
	DESCRIPTION	YES	NO	COMMENTS	
23.	Certificate of the Clerk and Recorder shall be worded as follows: ADAMS COUNTY CLERK AND RECORDER'S CERTIFICATE: This map was filed for record in the office of Adams County Clerk and Recorder, in the State of Colorado, at __M. on the \qquad day of \qquad , A.D. \qquad $B Y$: \qquad Deputy County Clerk and Recorder	-	\square		P
24	In the lower right-hand corner of the cover sheet the following shall appear: Reception No. \qquad	\square	V	lower right	P
25.	Show at top of each sheet, "AN-XX-XX, ANNEXATION MAP, to the City of Commerce City, Colorado. SHEET \qquad of \qquad " (Obtain XX-XX number from Community Development Department).	\square	∇		P
26.	Additional Planning Comments:				
27.	Additional Engineering Comments Upon final approval, in addition to the Mylars, AutoCAD files			to the city.	P

CONTROL DIAGRAM

notice:

IL COOF OLS NOT ADORESS BOUNOARY OR RIGHT-OF-WAY ISSUES,
 Es Shown are at surace (moorfev) obano (navo 1988) and distances are in u.s. surver feef.
 OWNERSHIP of THIS MAP RESTS WTH HHE CTIY Of COMMEREE CITY

 surverors cernicicate:
1 Cerner niat ti suver show hereon was performe under mi
$\frac{6-30-99}{\text { DATE OF surver }}$

GPS SURVEY OF SELECTED MONUNENTS LOCATED IN T1S,T2S AND T3S, R6OW,R67W AND R68W ALL OF TME ©TM PoN. D T3S, RCOW,RG7W AND RC8W ALL OF TH
COUNTY OF ADANS, STATE OF COLORADO

CONTROL DIAGRAM

CITY OF COMMERCE CITY

notce

 THIS SUNVEY DOES NOT ADORESS BOUNDARY OR RIGHT-OF-WAY ISUUES. AL Cooranars shown are cloinao cenral zone state plane horzontal oistances shown are at surface (modifio)
ELEVATONS (NAVO 1988) ANO DISTANCES ARE IN U.S. SUNVEF FEET. To Obtan groun (moified) cooronatis. use comane factor 1/ TO OBTAN GRID DISTANCES USED COMENED UACTOR X

-

surverors cernfcati:

Sunveror's Lano surver plats/RIGHT-of-way survers at
Page ___ recepton numer

	Legen
$+$	apparent secton corner (as noteo
\cdots	APparent quarter-SEcton corner (as noteo)
-	apparent centrr quarter-secton corner (As note)
	apparent secton line
N89919,34*E	MOOIfied (growi) bearic
2654.08^{\prime}	MOOFIED PLANE (GROUND) (ISTAMCE (TO

EEEVATON

Book l	$2 / 7$
Page 3776	
Reception	Number
2009-146	

CONTROL DIAGRAM

CITY OF COMMEREE CITY

GPS SURVEY OF SELECTED MONUNUENTS LOCATED IN T1S,T2S AND T3S, REBW,RETW AND RE8W ALL OF THIE ©TH PMa COUNTY OF ADAMS, STATE OF COLORADO
notice:

THIS SURVEY DOES NOT ADDRESS BOUNOARY OR RGHT-OF-wAY ISSUES.
 RIVNTAL OISTANCES SHOWN ARE AT SURFACE (MOOFFIED) to obtan ground (MOONFED) COORONATES, USE COMBNED FACTOR $1 / x$ o OBtan GRID DISTANCES USED COMBINED FACTOR $X=0.99979199$

suvveroos cerificart:

C-30-99
OATE OF SURVEY
\qquad
\qquad

- at \qquad bat of OF OF THE COUNTY SHRECORS LIN SUPVEY PLATS/R/RGHT-OF-WAY SURVEVS AT page
LEGEND \qquad
APPARENT SECTON cORNER (AS NOTED)
- APPARENT CENTER OUARTER-SECTON COONNER (AS NOTED)
-13"E Mant

CONTROL DIAGRAM

city or commerer city

Notice

THIS SUVVEY DOES NOT ADORESS BOUNDARY OR RIGHT-OF-WAY ISUUES. ALL Cooronaits shown are colorado central zone state plane horizontal oistances shown are at surface (moonfied) ELevatons (navo 1988) and oistances are in u.s. surver feti. To OBTAN GROUND (MOOIFED) COOROINAESS. USE COMBNED FACTOR OUNESSHP of THIS MAP RESTS WTH THE CITr of COMMEREE GIT,

Sunverors Cerniciate:

iling certification

 SURVEFOR'S LAND SUNVEY PLATS/RGHT-OF-WAY SUNVEES AT
Page ___ recepton number
LEGEND
APPARENT SECTON CORNER (AS NOTED)

- apparent center quarier-sectoon corner (as noted)

2654.08' MOOFFED PLANE (GROUND) Distrance (TO MEAM

2001 GPS STATON NUMEER

CONTROL DIAGRAM

notice

THS SUNVEY DoEs NOT adoress bounoary or Richt-of-way Issues.
 HORRZONTAL DISTANCES SHOWN ARE AT SUUFFACE (MOODFIED) Elevations (Navo 1988) and distances are in u.s. surver feet. To obtan grouno (monfee) cooronaits, use comeneo factor to ogtan crid distances used comeneb factor $x=0.09$ IC BASIS OF ELEVATON: EEEVATOWS OF MONMENTT ARE BSEE UPON AOMMS WYER TAKEN TO THE TOP OF MONUM

survevors cerniciate:

$$
\begin{aligned}
& \text { C.3.9.9 } \\
& \text { FLING CERTIFICATION }
\end{aligned}
$$

\qquad TMdesers
B-1-99.

DEPositied THIS Dain of of THE COUNTY
SURVEYOR'S LAND SURVEY PLATS/RIGHT-OF-WAY SURVETS AT
PAGE RECEPTON NUMER
\qquad

+ apparent secton corner (as noted)
APPARENT OUARIER-SECTIN CORNER (AS NOTED)
- - - - apparent section ine

ces staton numeer

GPS SURVEY OF SERECTED MONUMENTS LOCATED TทS, T2S AND T3S, RGCW, RC7W AND R68W ALL OF TME CTH PoM. COUNTY OF ADAMS, STATE OF COLORADO

CONTROL DIAGRAM

EXHIBIT A
 LOCATED WITHIN THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 1 , TOWNSHIP 3 SOUTH, RANGE 68 WEST OF THE 6TH P.M. CITY OF COMMERCE CITY, COUNTY OF ADAMS, STATE OF COLORADO

PARCEL DESCRIPTION

A PARCEL OF LAND LOCATED THE NORTHEAST QUARTER OF THE NORTHEAST QUARTER OF SECTION 1, TOWNSHIP 3 SOUTH, RANGE 68 WEST OF THE SIXTH PRINCIPAL MERIDIAN, COUNTY OF ADAMS, STATE OF COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHEAST CORNER OF SAID SECTION 1, AS MONUMENTED BY 3-1/4" ALUMINUM CAP, STAMPED "RLS 24673", WHENCE NORTH SIXTEENTH CORNER OF SAID SECTION 1, AS MONUMENTED BY A 2" ILLEGIBLE ALUMINUM CAP, BEARS S $00^{\circ} 00^{\prime} 00{ }^{\prime \prime}$ W, A DISTANCE OF 1320.79 FEET, FORMING THE BASIS OF BEARINGS USED IN THIS DESCRIPTION;

THENCE SOUTH 08º $43^{\prime} 40$ " WEST, A DISTANCE OF 263.61 FEET TO A POINT ON THE WEST LINE OF A 10 FOOT RIGHT-OF-WAY DEDICATION AT BOOK 6083, PAGE 635 OF THE ADAMS COUNTY RECORDS, AND THE POINT OF BEGINNING;

THENCE DEPARTING SAID WEST LINE, SOUTH $35^{\circ} 24^{\prime} 58^{\prime \prime}$ EAST, A DISTANCE OF 62.13 FEET TO A POINT OF CURVATURE;

THENCE ALONG A NON-TANGENT CURVE TO THE LEFT WITH A CENTRAL ANGLE OF $18^{\circ} 47^{\prime} 52^{\prime \prime}$, A RADIUS OF 675.00 FEET, AN ARC LENGTH OF 221.46 FEET AND A CHORD BEARING AND DISTANCE OF SOUTH $09^{\circ} 23^{\prime} 56{ }^{\prime \prime} \mathrm{WEST}, 220.47$ FEET TO A POINT ON SAID WEST LINE;

THENCE ALONG SAID WEST LINE, NORTH $00^{\circ} 00^{\prime} 00^{\prime \prime}$ EAST, A DISTANCE OF 268.14 FEET TO THE POINT OF BEGINNING.
CONTAINING AN AREA OF 3,493 SQ. FT. OR 0.080 ACRES, MORE OR LESS.
I, DARREN R. WOLTERSTORFF, BEING A PROFESSIONAL LAND SURVEYOR IN THE STATE OF COLORADO, DO HEREBY STATE THAT THIS EXHIBIT WAS PREPARED BY ME OR UNDER MY RESPONSIBLE CHARGE IN ACCORDANCE WITH APPLICABLE STANDARDS OF PRACTICE AND IS ACCURATE TO THE BEST OF MY KNOWLEDGE, INFORMATION AND BELIEF. THIS CERTIFICATION IS NOT A GUARANTY OR WARRANTY, EITHER EXPRESSED OR IMPLIED.

PRELIMINARY

THIS DOCUMENT SHALL
 NOT BE RECORDED FOR ANY PURPOSE AND SHALL NOT BE USED OR VIEWED OR RELIED UPON AS A FINAL

DARREN R. WOLTERSTORFF, PLS 38281
FOR AND ON BEHALF OF KIMLEY-HORN AND ASSOCIATES, INC

NOTES

1. ACCORDING TO COLORADO LAW YOU MUST COMMENCE ANY LEGAL ACTION BASED UPON ANY DEFECT IN THIS SURVEY WITHIN THREE YEARS AFTER YOU FIRST DISCOVER SUCH DEFECT. IN NO EVENT MAY ANY ACTION BASED UPON ANY DEFECT IN THIS SURVEY BE COMMENCED MORE THAN TEN YEARS FROM THE DATE OF THE CERTIFICATION SHOWN HEREON

EXHIBIT A

LOCATED WITHIN THE NORTHEAST QUARTER OF THE NORTHWEST QUARTER OF SECTION 1,
TOWNSHIP 3 SOUTH, RANGE 68 WEST OF THE 6TH P.M. CITY OF COMMERCE CITY, COUNTY OF ADAMS, STATE OF COLORADO

THIS DOCUMENT SHALL NOT BE RECORDED FOR ANY PURPOSE AND SHALL NOT BE USED OR VIEWED OR RELIED UPON AS A FINAL SURVEY DOCUMENT
USE COMMENCE CONTROL MONUMENTS AS $\$$ BASIS OF BERINGS ON THIS VACHApqGRASE9. ALSO SHOW RIGHT-OF-WAY BOOK" ALN CAPE PAGE NUMBERS FOR THE EXISTIN NANGE BOX

RIGHT-OF-WAY

notes:

1. ACCORDING TO COLORADO LAW YOU MUST COMMENCE ANY LEGAL ACTION BASED UPON ANY DEFECT IN THIS SURVEY WITHIN THREE YEARS AFTER YOU FIRST DISCOVER SUCH DEFECT. IN NO EVENT MAY ANY ACTION BASED UPON ANY DEFECT IN THIS SURVEY BE COMMENCED MORE THAN TEN YEARS FROM THE DATE OF THE CERTIFICATION SHOWN HEREON.
2. THIS DOCUMENT IS NOT A LAND SURVEY PLAT OR AN IMPROVEMENT SURVEY PLAT AND DOES NOT REPRESENT A MONUMENTED LAND SURVEY. IT IS INTENDED TO DEPICT THE ATTACHED PARCEL DESCRIPTION ONLY.

Traffic Impact Study

7001 Colorado Boulevard

Commerce City, Colorado

Prepared for:

Prospect, LLC

Kimley»"Horn
TRAPFFIC I M PAC T S T U D Y

7001 Colorado Boulevard

Commerce City, Colorado

Prepared for
Prospect, LLC
PO Box 103190
Denver, Colorado 80250

Prepared by
Kimley-Horn and Associates, Inc. 4582 South Ulster Street

Suite 1500
Denver, Colorado 80237
(303) 228-2300

April 2022

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES ii
LIST OF FIGURES ii
1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTION. 3
3.0 EXISTING AND FUTURE CONDITIONS 5
3.1 Existing Study Area/Site Visit 5
3.2 Existing Roadway Network 5
3.3 Existing Traffic Volumes 10
3.4 Unspecified Development Traffic Growth 10
4.0 PROJECT TRAFFIC CHARACTERISTICS 14
4.1 Trip Generation. 14
4.2 Trip Distribution 15
4.3 Traffic Assignment 15
4.4 Total (Background Plus Project) Traffic. 15
5.0 TRAFFIC OPERATIONS ANALYSIS 20
5.1 Analysis Methodology 20
5.2 Key Intersection Operational Analysis 21
5.3 Project Access Auxiliary Lane Analysis. 26
5.4 Vehicle Queuing Analysis 28
5.5 Bicycle and Pedestrian Access 28
5.6 Improvement Summary 29
6.0 CONCLUSIONS AND RECOMMENDATIONS 32

APPENDICES

Appendix A - Intersection Count Sheets
Appendix B - Future Traffic Projections
Appendix C - Trip Generation Worksheets
Appendix D - Intersection Analysis Worksheets
Appendix E - Signal \& All-Way Stop Control Warrant Analysis
Appendix F - Site Access Improvement Exhibit
Appendix G - Queue Analysis Worksheets
Appendix H - Conceptual Site Plan

LIST OF TABLES

Table 1-7001 Colorado Boulevard Traffic Generation... 14
Table 2 - Level of Service Definitions ... 20
Table 3-72nd Avenue \& Colorado Boulevard LOS Results ... 22
Table 4 - 70 ${ }^{\text {th }}$ Avenue \& Colorado Boulevard LOS Results.. 23
Table 5 - $68^{\text {th }}$ Avenue \& Colorado Boulevard LOS Results.. 24
Table 6 - Project Access Level of Service Results... 26
Table 7 - Turn Lane Queuing Analysis Results.. 28

LIST OF FIGURES

Figure 1 - Vicinity Map.. 4
Figure 2 - Existing Geometry and Control.. 9
Figure 3 - Existing Traffic Volumes.. 11
Figure 4 - 2024 Background Traffic Volumes.. 12
Figure 5 - 2045 Background Traffic Volumes.. 13
Figure 6 - Project Trip Distribution .. 16
Figure 7 - Project Traffic Assignment ... 17
Figure 8 - 2024 Total Traffic Volumes .. 18
Figure 9 - 2045 Total Traffic Volumes .. 19
Figure 10 - 2024 Recommended Geometry and Control ... 30
Figure 11 - 2045 Recommended Geometry and Control ... 31

This report has been prepared to document the results of a Traffic Impact Study for 7001 Colorado Boulevard in Commerce City, Colorado. 7001 Colorado Boulevard is proposed to include approximately 92 multifamily housing dwelling units. It is expected that 7001 Colorado Boulevard will be completed in the next couple of years; therefore, analysis was conducted for the 2024 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with the City of Commerce City standards and requirements:

- $72^{\text {nd }}$ Avenue and Colorado Boulevard (\#1)
- $70^{\text {th }}$ Avenue and Colorado Boulevard (\#2)
- $68^{\text {th }}$ Avenue and Colorado Boulevard (\#3)

In addition, the proposed full movement access at the intersection of $71^{\text {st }}$ Avenue and Colorado Boulevard was evaluated.

Regional access to 7001 Colorado Boulevard will be provided by Interstate 76 (I-76), Interstate 270 (I-270) and US Highway 85 (US-85). Primary access will be provided by Colorado Boulevard. Direct access will be provided by a full movement access located along the west side of Colorado Boulevard to align with $71^{\text {st }}$ Avenue.

7001 Colorado Boulevard is expected to generate approximately 394 weekday daily trips, with 30 of these trips occurring during the morning peak hour and 38 of these trips occurring during the afternoon peak hour.

Based on the analysis presented in this report, Kimley-Horn believes 7001 Colorado Boulevard will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following conclusions and recommendations:

2024 Recommendations:

- With completion of the 7001 Colorado Boulevard project, an access is proposed along the west side of Colorado Boulevard to align with 71st Avenue and serve the proposed residential development. It is recommended that a R1-1 "STOP" sign be installed on the eastbound approach exiting the development. Also, to meet Commerce City Standards, a 130 foot with 165 -foot taper northbound left turn lane may need to be constructed at this access. Although this access meets City warrants for implementation of a northbound left turn lane, left turn lanes were not provided (although warranted) with the recent reconstruction of the 70th Avenue and Colorado Boulevard. Therefore, it is believed existing geometric constraints may have prevented implementation of left turn lanes at the $70^{\text {th }}$ Avenue and Colorado Boulevard intersection. Therefore, additional design coordination will be required with the City to determine if a northbound left turn lane is needed at the project access. Of note, there are expected to be nine (9) vehicles making this left turn during the peak hour of the day. If a northbound left turn lane is implemented at the project access, bike lanes will be continued through the widened section of the street. Further, if the northbound left turn lane is implemented at the project access, the City may desire to designate a southbound left turn lane in the created shadow space of the northbound left turn lane.

2045 Recommendations:

- A signal may be needed at the intersection of 72 nd Avenue and Colorado Boulevard (\#1) if future traffic volumes are realized.

General Recommendations:

- Any on-site or offsite improvements should be incorporated into the Civil Drawings and conform to standards of the City of Commerce City and the Manual on Uniform Traffic Control Devices (MUTCD) - 2009 Edition.

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study for 7001 Colorado Boulevard in Commerce City, Colorado. A vicinity map illustrating the 7001 Colorado Boulevard development location is shown in Figure 1. 7001 Colorado Boulevard is proposed to include approximately 92 multifamily housing dwelling units. A conceptual site plan is attached in Appendix H. It is expected that 7001 Colorado Boulevard will be completed in the next couple of years; therefore, analysis was conducted for the 2024 shortterm buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with the City of Commerce City standards and requirements:

- $\quad 72^{\text {nd }}$ Avenue and Colorado Boulevard (\#1)
- $70^{\text {th }}$ Avenue and Colorado Boulevard (\#2)
- $68^{\text {th }}$ Avenue and Colorado Boulevard (\#3)

In addition, the proposed full movement access at the intersection of $71^{\text {st }}$ Avenue and Colorado Boulevard was evaluated.

Regional access to 7001 Colorado Boulevard will be provided by Interstate 76 (I-76), Interstate 270 (I-270) and US Highway 85 (US-85). Primary access will be provided by Colorado Boulevard. Direct access will be provided by a full movement access located along the west side of Colorado Boulevard to align with $71^{\text {st }}$ Avenue.

7001 COLORADO BOULEVARD COMMERCE CITY, COLORADO VICINITY MAP

FIGURE 1

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area/Site Visit

The existing site is comprised of industrial uses and vacant land. Industrial uses are located to the south of the site while vacant land and industrial uses are located to the north. To the west is The Commerce City and $72^{\text {nd }}$ RTD Station is located directly west of the site. Single family residences are located to the east of the project.

3.2 Existing Roadway Network

Colorado Boulevard extends in the north-south direction with one through lane in each direction and has a posted speed limit of 35 miles per hour. The Commerce City C3 Vision Plan classifies Colorado Boulevard as a major collector. $72^{\text {nd }}$ Avenue, $70^{\text {th }}$ Avenue, and $68^{\text {th }}$ Avenue extend in the east-west direction as two-lane roadways. $72^{\text {nd }}$ Avenue has a posted speed limit of 25 miles per hour west of Colorado Boulevard and a speed limit of 30 miles per hour east of Colorado Boulevard. $70^{\text {th }}$ Avenue and $68^{\text {th }}$ Avenue have a posted speed limit of 25 miles per hour.

The unsignalized intersection of $72^{\text {nd }}$ Avenue and Colorado Boulevard (\#1) operates with stop control on the eastbound and westbound $72^{\text {nd }}$ Avenue approaches. The northbound and southbound approaches consist of a left turn lane, one through lane, and a right turn lane. The eastbound approach consists of one shared lane for all movements while the westbound approach consists of a left turn lane and a shared through/right turn lane. An aerial photo of the existing intersection configuration is below (north is up - typical).

$72^{\text {nd }}$ Avenue and Colorado Boulevard (\#1)

The unsignalized intersection of $70^{\text {th }}$ Avenue and Colorado Boulevard (\#2) operates with stop control on all four approaches. All four approaches consist of one shared lane for all movements. An aerial photo of the existing intersection configuration is below.

$70^{\text {th }}$ Avenue and Colorado Boulevard (\#2)

The unsignalized intersection of $68^{\text {th }}$ Avenue and Colorado Boulevard (\#3) operates with stop control on the eastbound and westbound $68^{\text {th }}$ Avenue approaches. The west leg of this intersection is slightly offset and is a private driveway access. All four approaches consist of one shared lane for all movements. An aerial photo of the existing intersection configuration is below.

$68^{\text {th }}$ Avenue and Colorado Boulevard (\#3)

The intersection lane configuration and control for the key intersection is shown in Figure 2.

7001 COLORADO BOULEVARD
COMMERCE CITY, COLORADO
EXISTING GEOMETRY AND CONTROL

3.3 Existing Traffic Volumes

Existing turning movement counts were conducted at the intersection of $70^{\text {th }}$ Avenue and Colorado Boulevard (\#2) on Thursday, December 16, 2021 and at all other intersections on Thursday, April 7, 2022 during the morning and afternoon peak hours. The counts collected on December 16, 2021 were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on this count date. The counts collected on April 7, 2022 were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 2:00 PM to 6:00 PM on this count date. The existing intersection traffic volumes are shown in Figure 3 with count sheets provided in Appendix A.

3.4 Unspecified Development Traffic Growth

According to traffic projections from the Denver Regional Council of Governments (DRCOG) traffic model, the area surrounding the site is expected to have an average 25-year growth factor of 1.43. This growth factor equates to an annual growth rate of 1.6 percent. Future traffic volume projections and growth rate calculations are provided in Appendix B. This annual growth rate was used to estimate short-term 2024 and long-term 2045 traffic volume projections at the key intersection. The calculated background traffic volumes for 2024 and 2045 are shown in Figure 4 and Figure 5, respectively.

7001 COLORADO BOULEVARD COMMERCE CITY, COLORADO EXISTING TRAFFIC VOLUMES

Thursday, April 7, 2022
7:00 to 8:00AM (3:45 to 4:45PM)

Thursday, December 16, 2021 7:45 to 8:45AM (4:00 to 5:00PM)

Thursday, April 7, 2022
7:00 to 8:00AM (3:45 to 4:45PM)

LEGEND

Study Area Key Intersection
Weekday AM(PM)
Peak Hour Traffic Volumes

XX,X00 Estimated Daily Traffic Volume

FIGURE 3
Kimley») Horn

7001 COLORADO BOULEVARD
COMMERCE CITY, COLORADO 2024 BACKGROUND TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection
Weekday AM(PM)
Peak Hour Traffic Volumes

XX,X00 Estimated Daily Traffic Volume

FIGURE 4

7001 COLORADO BOULEVARD
COMMERCE CITY, COLORADO 2045 BACKGROUND TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection
Weekday AM (PM)
Peak Hour Traffic Volumes

XX,X00 Estimated Daily Traffic Volume

FIGURE 5

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the Trip Generation Manual' published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report fitted curve equations that applies to Multifamily Mid-Rise Housing (ITE Land Use Code 221), for traffic associated with the development.

7001 Colorado Boulevard is expected to generate approximately 394 weekday daily trips, with 30 of these trips occurring during the morning peak hour and 38 of these trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE Trip Generation Manual, $11^{\text {th }}$ Edition - Volume 1: User's Guide and Handbook, 2021. Table 1 summarizes the estimated trip generation for the 7001 Colorado Boulevard. The trip generation worksheets are included in Appendix C. Although this project site is in the direct vicinity of a RTD station, no trip reduction credits were taken to remain conservative.

Table 1-7001 Colorado Boulevard Traffic Generation

Land Use and Size	Weekday Vehicle Trips						
	Daily	AM Peak Hour			PM Peak Hour		
		In	Out	Total	In	Out	Total
Multifamily Mid-Rise Housing (ITE 221) 92 Dwelling Units	394	7	23	30	23	15	38

[^0]
4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project trip distribution for the proposed development is illustrated in Figure 6.

4.3 Traffic Assignment

7001 Colorado Boulevard traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in Table 1. Traffic assignment is shown in Figure 7.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short-term 2024 buildout horizon and long-term 2045 twenty-year planning horizon. These total traffic volumes for the study area are illustrated for the 2024 and 2045 horizon years in Figures 8 and 9, respectively.

7001 COLORADO BOULEVARD COMMERCE CITY, COLORADO PROJECT TRIP DISTRIBUTION

LEGEND
Study Area Key Intersection
Project Access Intersection
External Trip Distribution Percentage
Entering[Exiting]

FIGURE 6
Kimley») Horn

7001 COLORADO BOULEVARD COMMERCE CITY, COLORADO PROJECT TRAFFIC ASSIGNMENT

(X) Study Area Key Intersection

Project Access Intersection
Weekday AM (PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
FIGURE 7
Kimley») Horn

7001 COLORADO BOULEVARD COMMERCE CITY, COLORADO 2024 TOTAL TRAFFIC VOLUMES

FIGURE 8

7001 COLORADO BOULEVARD COMMERCE CITY, COLORADO 2045 TOTAL TRAFFIC VOLUMES

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2024 and 2045 development horizons at the identified key intersections. The acknowledged source for determining overall capacity is the current edition of the Highway Capacity Manual (HCM)².

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). For intersections and roadways in this study area, standard traffic engineering practice recommends overall intersection LOS D and movement/approach LOS E as the minimum desirable thresholds for acceptable operations. Table 2 shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay $(\mathrm{sec} / \mathrm{veh})$
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

Study area intersections were analyzed based on average total delay analysis for unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for signalized, roundabout, and all-way stop controlled intersections are defined for each approach and for the overall intersection.

[^1]
5.2 Key Intersection Operational Analysis

Calculations for the operational level of service at the key intersections for the study area are provided in Appendix D. The existing year analysis is based on the lane geometry and intersection control shown in Figure 2. Existing peak hour factors were utilized in the existing, 2024 horizon, and 2045 horizon analysis years. Synchro traffic analysis software was used to analyze the signalized, and unsignalized key intersections for HCM level of service.

$72^{\text {nd }}$ Avenue and Colorado Boulevard (\#1)

The unsignalized intersection of $72^{\text {nd }}$ Avenue and Colorado Boulevard (\#1) operates with stop control on the eastbound and westbound $72^{\text {nd }}$ Avenue approaches. The movements at this intersection operate acceptably at LOS C or better during both peak hours under existing conditions. With project traffic and the existing lane configurations, all movements are anticipated to continue operating at an acceptable level of service in 2024. By 2045, the eastbound approach may operate poorly with or without the addition of project traffic.

An alternative analysis was also provided in 2024 and 2045 with this intersection operating with all-way stop control. The conversion of this intersection from two-way stop control to all-way stop control would allow for implementation of crosswalks while improving pedestrian connectivity with Adams City Middle School located to the east. With all-way stop control, this intersection is expected to operate acceptably during the peak hours in 2024 but with long delays by 2045. A total of four of the eight hourly volume all-way stop control warrants are expected to be met by 2024. It is believed that each hour could meet warrants with the addition pedestrian units once crosswalks were provided with all-way stop control. Independent of this project, the City of Commerce City could consider implementing all-way stop control and crosswalks at the $72^{\text {nd }}$ Avenue and Colorado Boulevard intersection for the short-term horizon.

A signal warrant analysis was completed for this intersection and it was found that a signal may be warranted in 2045 without the addition of project traffic. If future traffic volumes are realized by 2045, signalization should be considered at this intersection by the long-term horizon. With signalization, the intersection is anticipated to operate acceptably in 2045 with the addition of project traffic. The all-way stop control and signal warrant calculations and figure is provided in Appendix E. The results of the LOS analysis conducted at this intersection is shown in Table 3.

Table 3-72 ${ }^{\text {nd }}$ Avenue \& Colorado Boulevard LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2021 Existing				
Northbound Left	8.3	A	0.0	A
Eastbound Approach	20.1	C	19.3	C
Westbound Left	19.0	C	16.7	C
Westbound Through/Right	10.8	B	12.7	B
Southbound Left	8.2	A	8.6	A
2024 Background				
Northbound Left	8.3	A	0.0	A
Eastbound Approach	21.2	C	20.6	C
Westbound Left	19.9	C	17.4	C
Westbound Through/Right	11.0	B	13.1	B
Southbound Left	8.2	A	8.7	A
2024 Total Traffic				
Northbound Left	8.3	A	0.0	A
Eastbound Approach	21.5	C	21.0	C
Westbound Left	20.1	C	17.8	C
Westbound Through/Right	11.0	B	13.2	B
Southbound Left	8.3	A	8.7	A
2024 Total Traffic (AWSC) \#	17.3	C	20.7	C
Eastbound Approach	11.4	B	11.9	B
Westbound Approach	11.1	B	13.1	B
Northbound Approach	15.4	C	30.1	D
Southbound Approach	19.6	C	15.6	C
2045 Background				
Northbound Left	8.8	A	0.0	A
Eastbound Approach	37.5	E	88.3	F
Westbound Left	30.8	D	24.4	C
Westbound Through/Right	12.8	B	18.0	C
Southbound Left	8.7	A	9.5	A
2045 Total Traffic (AWSC) \#	48.7	E	67.6	F
Eastbound Approach	13.1	B	14.3	B
Westbound Approach	13.6	B	18.8	C
Northbound Approach	27.3	D	133.6	F
Southbound Approach	66.8	F	28.3	D
2045 Total Traffic (Signalized) \#\#	9.8	A	14.4	B

\# = All-Way Stop Control (AWSC); \#\# = Signalized

$70^{\text {th }}$ Avenue and Colorado Boulevard (\#2)

The unsignalized intersection of $70^{\text {th }}$ Avenue and Colorado Boulevard operates with stop control on all four approaches. The intersection operates acceptably at LOS B during both peak hours under existing conditions. With project traffic and the existing lane configurations, all movements are anticipated to continue operating at an acceptable level of service throughout the 2045 horizon. Therefore, no modifications to the existing control or lane configurations are recommended at this intersection. Table 4 provides the results of the LOS analysis conducted at this intersection.

Table 4-70 ${ }^{\text {th }}$ Avenue \& Colorado Boulevard LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2021 Existing	10.3	B	10.7	B
2024 Background	10.6	B	11.1	B
2024 Background Plus Project	10.7	B	11.3	B
2045 Background	14.6	B	16.0	C
2045 Background Plus Project	15.0	B	16.5	C

$68^{\text {th }}$ Avenue and Colorado Boulevard (\#3)

The unsignalized intersection of $68^{\text {th }}$ Avenue and Colorado Boulevard (\#3) operates with stop control on the eastbound and westbound $68^{\text {th }}$ Avenue approaches. The movements at this intersection operate acceptably at LOS C or better during both peak hours under existing conditions. With project traffic and the existing lane configurations, all movements are anticipated to continue operating at an acceptable level of service throughout the 2045 horizon. Therefore, no modifications to the existing control or lane configurations are recommended at this intersection. Table 5 provides the results of the LOS analysis conducted at this intersection.

Table 5-68 ${ }^{\text {th }}$ Avenue \& Colorado Boulevard LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2021 Existing				
Northbound Left	8.0	A	7.7	A
Eastbound Approach	14.2	B	17.2	C
Westbound Approach	10.4	B	11.6	B
Southbound Left	7.6	A	8.1	A
2024 Background				
Northbound Left	8.1	A	7.7	A
Eastbound Approach	14.6	B	18.0	C
Westbound Approach	10.5	B	11.8	B
Southbound Left	7.6	A	8.2	A
2024 Background Plus Project				
Northbound Left	8.1	A	7.7	A
Eastbound Approach	14.7	B	18.3	C
Westbound Approach	10.5	B	11.8	B
Southbound Left	7.6	A	8.2	A
2045 Background				
Northbound Left	8.4	A	7.9	A
Eastbound Approach	19.8	C	32.8	D
Westbound Approach	11.8	B	14.0	B
Southbound Left	7.8	A	8.7	A
2045 Background Plus Project				
Northbound Left	8.4	A	7.9	A
Eastbound Approach	20.0	C	34.0	D
Westbound Approach	11.8	B	14.1	B
Southbound Left	7.8	A	8.7	A

Project Access

With completion of the 7001 Colorado Boulevard project, an access is proposed along the west side of Colorado Boulevard to align with 71st Avenue and serve the proposed residential development. It is recommended that a R1-1 "STOP" sign be installed on the eastbound approach exiting the development. Also, to meet Commerce City Standards, a 130 foot with 165 -foot taper northbound left turn lane may need to be constructed at this access. Although this access meets City warrants for implementation of a northbound left turn lane, left turn lanes were not provided (although warranted) with the recent reconstruction of the 70th Avenue and Colorado Boulevard. Therefore, it is believed existing geometric constraints may have prevented implementation of left turn lanes at the $70^{\text {th }}$ Avenue and Colorado Boulevard intersection. Therefore, additional design coordination will be required with the City to determine if a northbound left turn lane is needed at the project access. A conceptual exhibit is attached in Appendix F showing the proposed configuration of the project access with a northbound left turn lane. Of note, there are expected to be nine (9) vehicles making this left turn during the peak hour of the day. If a northbound left turn lane is implemented at the project access, bike lanes will be continued through the widened section of the street. Further, if the northbound left turn lane is implemented at the project access, the City may desire to designate a southbound left turn lane in the created shadow space of the northbound left turn lane. Table 6 provides the results of the level of service for this project street access with and without a northbound left turn lane. As shown in the table, the project access intersection along Colorado Boulevard to align with $71^{\text {st }}$ Avenue is anticipated to have all movements operating with acceptable LOS C or better during the peak hours in both the buildout year 2024 and the 2045 long term horizons with or without a northbound left turn lane.

Table 6 - Project Access Level of Service Results

Intersection	2024 Total				2045 Total			
	AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
	Delay (sec/ veh)	LOS						
$71^{\text {st }}$ Avenue and Colorado								
Boulevard Access								
Northbound Left	8.0	A	7.9	A	8.4	A	8.2	A
Eastbound Approach	12.8	B	14.1	B	15.4	C	17.9	C
Westbound Approach	11.8	B	13.7	B	13.6	B	17.2	C
Southbound Left	7.7	A	8.2	A	7.8	A	8.6	A
$71^{\text {st }}$ Avenue and Colorado								
Boulevard Access \#								
Northbound Left	8.0	A	7.9	A	8.4	A	8.2	A
Eastbound Approach	12.8	B	14.1	B	15.4	C	17.8	C
Westbound Approach	11.8	B	13.7	B	13.6	B	17.2	C
Southbound Left	7.7	A	8.2	A	7.8	A	8.6	A

\# = Northbound Left Turn Lane

5.3 Project Access Auxiliary Lane Analysis

The City of Commerce City Engineering Construction Standards and Specifications were used to determine if turn lanes are warranted at the project access. The City of Commerce City classifies Colorado Boulevard as a major collector roadway.

According to section 3.04.1 for Major Collector roadways, a left turn lane with storage length plus taper length is required for all accesses, a right turn lane with storage length plus taper is required for any access with a projected peak hour right ingress turning volume greater than 25 vehicles per hour (vph), and a right turn acceleration lane is required for any access with a projected peak hour right egress turning volume greater than 10 vph .

Based on the major collector roadway classification and 2045 traffic volume projections, turn lane requirements at the project intersection along Colorado Boulevard are as follows:

$71^{\text {st }}$ Avenue and Colorado Boulevard Access (\#4)

- A northbound left turn lane is warranted for the $71^{\text {st }}$ Avenue and Colorado Boulevard Access based on Colorado Boulevard being a major collector roadway. To meet City standard the northbound left turn lane would need to be 130 feet long (calculated as a 90foot deceleration length plus 40 -foot storage length) plus a 165 -foot taper. Although this
access meets City warrants for implementation of a northbound left turn lane, it has been noticed that left turn lanes were not provided (although warranted) with the recent reconstruction of the 70th Avenue and Colorado Boulevard. Therefore, it is believed that current geometric constraints may prevent this northbound left turn lane and northbound left turn lane may not be desired by the City at this access. Of note, there are expected to be nine (9) vehicles making this left turn during the peak hour of the day.
- A southbound right turn lane is not warranted for the $71^{\text {st }}$ Avenue and Colorado Boulevard Access based on projected 2045 background plus project traffic volumes being 14 southbound right turns during the peak hour and the threshold being 25 vph .
- An eastbound right turn to southbound acceleration lane is not warranted for the $71^{\text {st }}$ Avenue and Colorado Boulevard Access based on projected 2024 background plus project traffic volumes being 9 eastbound right turns during the peak hour and the threshold being 10 vph .

It should be noted that the intersection of $70^{\text {th }}$ Avenue and Colorado Boulevard was recently reconstructed in 2019 and did not incorporate left turn lanes at this intersection. Technically, based on City standards, left turn lanes should be incorporated on each approach of this intersection. However, it is believed that these left turn lanes were not included with the recent reconstruction of the $70^{\text {th }}$ Avenue and Colorado Boulevard intersection due to this intersection operating with all-way stop control and to avoid driver confusion with this control and the additional lanes. As such, no modifications to the existing control or lane configurations are recommended at this intersection.

5.4 Vehicle Queuing Analysis

A vehicle queuing analysis was conducted for the study area intersections. The queuing analysis was performed using Synchro presenting the results of the $95^{\text {th }}$ percentile queue lengths. Results are shown in the following Table 7 with calculations provided within the level of service operational sheets of Appendix D for unsignalized intersections and Appendix G for signalized intersections.

Table 7 - Turn Lane Queuing Analysis Results

	Existing Turn Lane Length (feet)	2024 Calculated Queue (feet)	2024 Recommended Length (feet)	2045 Calculated Queue (feet)	2045 Recommended Length (feet)
$72^{\text {nd } \& \text { Colorado (\#1) }}$	100^{\prime}	25^{\prime}	100^{\prime}		25^{\prime}

TWLTL = Two-Way Left Turn Lane; DNE = Does Not Exist; T = Taper; CC=Commerce City Standard; Blue Text = Recommendation

As shown in the table above, if a northbound left turn lane is implemented at the $71^{\text {st }}$ Avenue and Colorado Boulevard access (\#4), it should be designated with 130 feet of length plus a 165-foot taper to meet Commerce City Standards.

5.5 Bicycle and Pedestrian Access

Sidewalks are provided along both sides of the Colorado Boulevard between $72^{\text {nd }}$ Avenue and $70^{\text {th }}$ Avenue. The City recently improved Colorado Boulevard from $72^{\text {nd }}$ Avenue to $70^{\text {th }}$ Avenue as a complete street with incorporation of bike lanes, sidewalks, and curb and gutter. North of $72^{\text {nd }}$ Avenue, Colorado Boulevard provides a sidewalk on the east side of the roadway. There are not any sidewalks present on either side of Colorado Boulevard south of $70^{\text {th }}$ Avenue. However, the City will be improving Colorado Boulevard from $70^{\text {th }}$ Avenue to $68^{\text {th }}$ Avenue to match the roadway section to the north with sidewalks, bike lanes, and curb and gutter along both sides of Colorado Boulevard. This improvement to Colorado Boulevard would provide a complete sidewalk walking route to Alsup Elementary School on $68^{\text {th }}$ Avenue as well as Adams City Middle School on $72^{\text {nd }}$ Avenue. Sidewalk is provided on the north side of $72^{\text {nd }}$ Avenue from Colorado Boulevard to Adams City Middle School and on the immediate southeast corner of the intersection with Colorado Boulevard. Therefore, the walking route to Adams City Middle School would be on
the north side of $72^{\text {nd }}$ Avenue. To the west of Colorado Boulevard, a sidewalk is provided on the south side of $72^{\text {nd }}$ Avenue. There are sidewalks present on both sides of $70^{\text {th }}$ Avenue adjacent to the site. The Commerce City and $72^{\text {nd }}$ RTD Station is located directly west of the site along $70^{\text {th }}$ Avenue. The sidewalks along $70^{\text {th }}$ Avenue will be used by the proposed development to provide access to the RTD station. Sidewalks are provided on both sides of $68^{\text {th }}$ Avenue east of Colorado Boulevard. A bike lane currently exists on Colorado Boulevard between $72^{\text {nd }}$ Avenue and $70^{\text {th }}$ Avenue and will be extended to $68^{\text {th }}$ Avenue in the future.

Crosswalks are provided on all four legs of the all-way stop control intersection of $70^{\text {th }}$ Avenue and Colorado Boulevard. A crosswalk is provided on the east leg of the $72^{\text {nd }}$ Avenue and Colorado Boulevard intersection while there are not any crosswalks at the intersection of $68^{\text {th }}$ Avenue and Colorado Boulevard. Vehicle traffic does not stop along Colorado Boulevard at the intersections with $72^{\text {nd }}$ Avenue and $68^{\text {th }}$ Avenue. As such, and due to the proximity of the Adams City Middle School to the east along $72^{\text {nd }}$ Avenue, all-way stop control (evaluated previously) could be considered in the short-term at the intersection of $72^{\text {nd }}$ Avenue and Colorado Boulevard. Crosswalks could then be incorporated on all four legs of this intersection improving pedestrian connectivity with the school to the east.

5.6 Improvement Summary

Based on the results of the intersection operational and vehicle queuing analysis, the key intersection recommended improvements and control are shown in Figure 10 for the 2024 horizon and Figure 11 for the 2045 horizon.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes 7001 Colorado Boulevard will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following conclusions and recommendations:

2024 Recommendations:

- With completion of the 7001 Colorado Boulevard project, an access is proposed along the west side of Colorado Boulevard to align with 71st Avenue and serve the proposed residential development. It is recommended that a R1-1 "STOP" sign be installed on the eastbound approach exiting the development. Also, to meet Commerce City Standards, a 130 foot with 165 -foot taper northbound left turn lane may need to be constructed at this access. Although this access meets City warrants for implementation of a northbound left turn lane, left turn lanes were not provided (although warranted) with the recent reconstruction of the 70th Avenue and Colorado Boulevard. Therefore, it is believed existing geometric constraints may have prevented implementation of left turn lanes at the $70^{\text {th }}$ Avenue and Colorado Boulevard intersection. Therefore, additional design coordination will be required with the City to determine if a northbound left turn lane is needed at the project access. Of note, there are expected to be nine (9) vehicles making this left turn during the peak hour of the day. If a northbound left turn lane is implemented at the project access, bike lanes will be continued through the widened section of the street. Further, if the northbound left turn lane is implemented at the project access, the City may desire to designate a southbound left turn lane in the created shadow space of the northbound left turn lane.

2045 Recommendations:

- A signal may be needed at the intersection of 72 nd Avenue and Colorado Boulevard (\#1) if future traffic volumes are realized.

General Recommendations:

- Any on-site or offsite improvements should be incorporated into the Civil Drawings and conform to standards of the City of Commerce City and the Manual on Uniform Traffic Control Devices (MUTCD) - 2009 Edition.

APPENDICES

APPENDIX A

Intersection Count Sheets

Two-Hour Count Summaries

Interval Start		72ND AVE				72ND AVE				COLORADO BLVD				COLORADO BLVD				$\begin{gathered} \text { 15-min } \\ \text { Total } \end{gathered}$	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
7:00	AM	0	11	0	0	0	4	0	25	0	1	69	1	0	37	97	7	252	0
7:15	AM	0	5	0	0	0	7	1	25	0	0	57	2	0	34	96	3	230	0
7:30	AM	0	3	1	0	0	6	3	25	0	1	57	3	0	36	104	12	251	0
7:45	AM	0	7	0	1	0	5	1	21	0	0	54	2	0	52	105	13	261	994
8:00	AM	0	8	0	0	0	6	0	26	0	1	45	8	0	30	106	11	241	983
8:15	AM	0	8	1	0	0	10	3	16	0	0	56	6	0	23	83	7	213	966
8:30	AM	0	12	1	1	1	5	0	27	0	0	42	5	0	22	73	8	197	912
8:45	AM	0	5	0	0	0	8	1	20	0	0	32	5	0	18	61	10	160	811
Count	Total	0	59	3	2	1	51	9	185	0	3	412	32	0	252	725	71	1,805	0
	All	0	26	1	1	0	22	5	96	0	2	237	8	0	159	402	35	994	0
Peak	HV	0	25	0	0	0	4	4	6	0	1	80	5	0	2	44	24	195	0
	HV\%	-	96\%	0\%	0\%	-	18\%	80\%	6\%	-	50\%	34\%	63\%	-	1\%	11\%	69\%	20\%	0

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	11	3	28	11	53	0	1	0	0	1	0	0	0	0	0
7:15 AM	5	6	25	21	57	0	0	0	0	0	0	0	0	1	1
7:30 AM	2	3	21	20	46	0	0	0	0	0	0	0	0	0	0
7:45 AM	7	2	12	18	39	0	0	0	0	0	0	0	0	1	1
8:00 AM	7	5	9	25	46	0	0	0	0	0	1	0	0	1	2
8:15 AM	8	4	20	16	48	0	0	0	0	0	4	0	0	4	8
8:30 AM	12	2	17	18	49	0	0	0	0	0	0	0	0	0	0
8:45 AM	4	1	9	20	34	0	0	0	0	0	0	1	1	0	2
Count Total	56	26	141	149	372	0	1	0	0	1	5	1	1	7	14
Peak Hour	25	14	86	70	195	0	1	0	0	1	0	0	0	2	2

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles																				
Interval Start	72ND AVE				72ND AVE					COLORADO BLVD					COLORADO BLVD				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	UT	LT	TH	RT	UT	LT		TH	RT	UT	LT		TH	RT	UT	LT	TH	RT		
7:00 AM	0	11	0	0	0	1		0	2	0	0		28	0	0	1	10	0	53	0
7:15 AM		5	0	0	0	3		1	2	0	0		24	1	0	1	18	2	57	0
7:30 AM	0	2	0	0	0	0		2	1	0	1		17	3	0	0	10	10	46	0
7:45 AM	0	7	0	0	0	0		1	1	0	0		11	1	0	0	6	12	39	195
8:00 AM		7	0	0	0	0		0	5	0	0		6	3	0	1	14	10	46	188
8:15 AM	0	8	0	0	0	2		1	1	0	0		20	0	0	0	9	7	48	179
8:30 AM	0	11	1	0	0	2		0	0	0	0		14	3	0	1	9	8	49	182
8:45 AM	0	4	0	0	0	0		1	0	0	0		9	0	0	2	10	8	34	177
Count Total	0	55	1	0	0	8		6	12	0	1		129	11	0	6	86	57	372	0
Peak Hour	0	25	0	0	0	4		4	6	0	1		80	5	0	2	44	24	195	0
Two-Hour Count Summaries - Bikes																				
Interval Start	72ND AVE				72ND AVE					COLORADO BLVD					COLORADO BLVD				15-min Total	Rolling One Hour
	Eastbound				Westbound					Northbound					Southbound					
	LT		TH	RT	LT		TH		RT	LT		TH		RT	LT		TH	RT		
7:00 AM	0		0	0	0		1		0	0		0		0	0		0	0	1	0
7:15 AM	0			0	0		0		0	0		0		0	0			0	0	0
7:30 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	0
7:45 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	1
8:00 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	0
8:15 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	0
8:30 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	0
8:45 AM	0		0	0	0		0		0	0		0		0	0		0	0	0	0
Count Total	0		0	0	0		1		0	0		0		0	0		0	0	1	0
Peak Hour	0		0	0	0		1		0	0		0		0	0		0	0	1	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.																				

www.idaxdata.com

Four-Hour Count Summaries																			
Interval Start		72ND AVE				72ND AVE				COLORADO BLVD				COLORADO BLVD				15-min Total	Rolling One Hour
		Eastbound				Westbound				Northbound				Southbound					
		UT	LT	TH	RT														
2:00	PM	0	8	1	1	0	5	0	10	0	0	56	2	0	28	45	9	165	0
2:15	PM	0	9	2	0	0	7	1	15	0	0	44	1	0	13	46	9	147	0
2:30	PM	0	10	1	0	0	4	3	13	0	1	58	12	1	20	68	7	198	0
2:45	PM	0	9	0	1	0	6	0	22	0	0	65	3	0	25	64	4	199	709
3:00	PM	0	5	2	0	0	7	1	23	0	0	78	8	0	33	63	12	232	776
3:15	PM	0	9	1	2	0	5	1	25	0	0	69	7	1	34	71	5	230	859
3:30	PM	0	6	1	2	0	4	0	28	0	1	99	6	0	26	60	6	239	900
3:45	PM	0	4	5	2	0	4	2	37	0	0	107	5	0	23	68	9	266	967
4:00	PM	0	7	3	1	0	2	0	39	0	0	101	1	0	37	73	6	270	1,005
4:15	PM	0	3	5	1	0	11	0	52	0	0	77	8	0	32	63	10	262	1,037
4:30	PM	0	1	1	1	0	6	0	42	0	0	110	9	0	32	58	3	263	1,061
	PM	0	4	3	1	0	4	0	33	0	0	122	3	0	26	54	7	257	1,052
5:00	PM	0	6	1	2	0	3	0	39	0	0	101	4	0	23	54	8	241	1,023
	PM	0	3	3	1	0	6	1	41	0	0	62	3	0	32	45	7	204	965
5:30	PM	0	3	2	0	0	2	0	34	0	0	79	5	0	15	41	2	183	885
5:45	PM	0	3	2	2	0	5	1	22	0	0	64	4	0	27	37	2	169	797
Count	Total	0	90	33	17	0	81	10	475	0	2	1,292	81	2	426	910	106	3,525	0
	All	0	15	14	5	0	23	2	170	0	0	395	23	0	124	262	28	1,061	0
Hour	HV	0	12	12	3	0	6	1	4	0	0	43	4	0	7	64	26	182	0
	HV\%	-	80\%	86\%	60\%	-	26\%	50\%	2\%	-	-	11\%	17\%	-	6\%	24\%	93\%	17\%	0

Note: Four-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	9	4	19	32	64	0	0	0	0	0	0	0	0	0	0
2:15 PM	10	7	10	28	55	0	0	0	0	0	0	0	0	0	0
2:30 PM	10	3	17	31	61	0	0	0	0	0	0	0	0	0	0
2:45 PM	10	2	17	29	58	0	0	0	0	0	0	0	0	2	2
3:00 PM	5	3	17	29	54	0	0	0	0	0	0	0	0	0	0
3:15 PM	10	3	12	33	58	0	0	0	0	0	0	0	0	1	1
3:30 PM	8	2	25	25	60	0	0	0	0	0	1	1	1	0	3
3:45 PM	8	1	17	22	48	0	0	0	0	0	0	0	0	0	0
4:00 PM	8	1	11	24	44	0	0	0	0	0	0	0	0	0	0
4:15 PM	8	8	9	34	59	0	0	1	0	1	1	0	1	2	4
4:30 PM	3	1	10	17	31	0	0	0	0	0	0	0	0	0	0
4:45 PM	6	2	13	17	38	0	0	0	0	0	0	0	0	0	0
5:00 PM	6	2	12	20	40	0	0	0	0	0	0	0	0	0	0
5:15 PM	5	4	3	16	28	0	0	0	0	0	0	0	0	1	1
5:30 PM	4	1	11	12	28	0	0	0	0	0	0	0	0	0	0
5:45 PM	4	2	4	9	19	0	0	0	0	0	0	0	0	0	0
Count Total	114	46	207	378	745	0	0	1	0	1	2	1	2	6	11
Peak Hour	27	11	47	97	182	0	0	1	0	1	1	0	1	2	4

Four-Hour Count Summaries - Heavy Vehicles

Interval Start	72ND AVE				72ND AVE				COLORADO BLVD				COLORADO BLVD				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	7	1	1	0	4	0	0	0	0	18	1	0	5	18	9	64	0
2:15 PM	0	9	1	0	0	5	1	1	0	0	10	0	0	1	18	9	55	0
2:30 PM	0	9	1	0	0	1	2	0	0	1	11	5	0	1	23	7	61	0
2:45 PM	0	9	0	1	0	1	0	1	0	0	17	0	0	5	21	3	58	238
3:00 PM	0	4	1	0	0	1	1	1	0	0	16	1	0	2	16	11	54	228
3:15 PM	0	8	1	1	0	2	1	0	0	0	11	1	0	1	27	5	58	231
3:30 PM	0	6	1	1	0	2	0	0	0	1	22	2	0	1	18	6	60	230
3:45 PM	0	2	5	1	0	0	1	0	0	0	16	1	0	2	13	7	48	220
4:00 PM	0	6	2	0	0	0	0	1	0	0	11	0	0	1	17	6	44	210
4:15 PM	0	3	4	1	0	5	0	3	0	0	8	1	0	4	20	10	59	211
4:30 PM	0	1	1	1	0	1	0	0	0	0	8	2	0	0	14	3	31	182
4:45 PM	0	3	2	1	0	1	0	1	0	0	12	1	0	2	10	5	38	172
5:00 PM	0	3	1	2	0	1	0	1	0	0	10	2	0	1	12	7	40	168
5:15 PM	0	2	2	1	0	2	1	1	0	0	3	0	0	0	9	7	28	137
5:30 PM	0	3	1	0	0	1	0	0	0	0	9	2	0	0	11	1	28	134
5:45 PM	0	1	1	2	0	1	1	0	0	0	3	1	0	1	6	2	19	115
Count Total	0	76	25	13	0	28	8	10	0	2	185	20	0	27	253	98	745	0
Peak Hour	0	12	12	3	0	6	1	4	0	0	43	4	0	7	64	26	182	0

Four-Hour Count Summaries - Bikes

Interval Start	72ND AVE			72ND AVE			COLORADO BLVD			COLORADO BLVD			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	1	0	0	0	1	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	1	0	0	0	1	0
Peak Hour	0	0	0	0	0	0	0	0	1	0	0	0	1	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.														

Ridgeview Data
Collection

Commerce City, CO 7001 Colorado Blvd
AM Peak
70th Ave and Colorado Blvd

File Name : 70th and Colorado AM
Site Code : IPO 585
Start Date : 12/16/2021
Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

	70th Ave Eastbound					70th Ave Westbound					Colorado Blvd Northbound					Colorado Blvd Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	0	0	0	0	0	7	0	10	0	17	0	55	1	0	56	2	61	0	0	63	136
07:15 AM	0	0	0	0	0	7	0	4	0	11	1	55	2	0	58	3	63	4	0	70	139
07:30 AM	3	0	1	0	4	4	0	8	0	12	1	24	1	0	26	6	61	1	0	68	110
07:45 AM	1	0	0	0	1	6	0	10	0	16	1	37	4	0	42	6	87	0	0	93	152
Total	4	0	1	0	5	24	0	32	0	56	3	171	8	0	182	17	272	5	0	294	537

| $08: 00$ AM | 2 | 1 | 0 | 0 | 3 | 7 | 1 | 10 | 0 | 18 | 1 | 21 | 3 | 0 | 25 | 3 | 74 | 0 | 0 | 77 | 123 |
| ---: |
| $08: 15$ AM | 1 | 0 | 0 | 0 | 1 | 10 | 2 | 8 | 0 | 20 | 0 | 46 | 5 | 1 | 52 | 3 | 90 | 3 | 0 | 96 | 169 |
| $08: 30$ AM | 2 | 0 | 0 | 0 | 2 | 4 | 0 | 2 | 0 | 6 | 0 | 45 | 3 | 0 | 48 | 3 | 51 | 1 | 0 | 55 | 111 |
| $08: 45$ AM | 1 | 0 | 0 | 0 | 1 | 3 | 0 | 7 | 1 | 11 | 0 | 31 | 4 | 1 | 36 | 5 | 68 | 4 | 0 | 77 | 125 |
| Total | 6 | 1 | 0 | 0 | 7 | 24 | 3 | 27 | 1 | 55 | 1 | 143 | 15 | 2 | 161 | 14 | 283 | 8 | 0 | 305 | 528 |

| Grand Total | 10 | 1 | 1 | 0 | 12 | 48 | 3 | 59 | 1 | 111 | 4 | 314 | 23 | 2 | 343 | 31 | 555 | 13 | 0 | 599 | 1065 |
| ---: |
| Apprch \% | 83.3 | 8.3 | 8.3 | 0 | | 43.2 | 2.7 | 53.2 | 0.9 | | 1.2 | 91.5 | 6.7 | 0.6 | | 5.2 | 92.7 | 2.2 | 0 | | |
| Total \% | 0.9 | 0.1 | 0.1 | 0 | 1.1 | 4.5 | 0.3 | 5.5 | 0.1 | 10.4 | 0.4 | 29.5 | 2.2 | 0.2 | 32.2 | 2.9 | 52.1 | 1.2 | 0 | 56.2 | |
| Automobiles | 10 | 1 | 1 | 0 | 12 | 48 | 2 | 59 | 0 | 109 | 4 | 314 | 23 | 0 | 341 | 31 | 555 | 13 | 0 | 599 | 1061 |
| \%Automobiles | 100 | 100 | 100 | 0 | 100 | 100 | 66.7 | 100 | 0 | 98.2 | 100 | 100 | 100 | 0 | 99.4 | 100 | 100 | 100 | 0 | 100 | 99.6 |
| Bicycle and Pedestrian | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 4 |
| \%Bicyde and | 0 | 0 | 0 | 0 | 0 | 0 | 33.3 | 0 | 100 | 1.8 | 0 | 0 | 0 | 100 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0.4 |
| Pedestrian | |

Commerce City, CO 7001 Colorado Blvd
AM Peak
70th Ave and Colorado Blvd

File Name : 70th and Colorado AM
Site Code : IPO 585
Start Date : 12/16/2021
Page No :2

Ridgeview Data
Collection

Commerce City, CO
File Name : 70th and Colorado AM
Site Code : IPO 585
Start Date : 12/16/2021
AM Peak
70th Ave and Colorado Blvd

	70th Ave Eastbound					70th Ave Westbound					Colorado Blvd Northbound					Colorado Blvd Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07:45 AM																					
07:45 AM	1	0	0	0	1	6	0	10	0	16	1	37	4	0	42	6	87	0	0	93	152
08:00 AM	2	1	0	0	3	7	1	10	0	18	1	21	3	0	25	3	74	0	0	77	123
08:15 AM	1	0	0	0	1	10	2	8	0	20	0	46	5	1	52	3	90	3	0	96	169
08:30 AM	2	0	0	0	2	4	0	2	0	6	0	45	3	0	48	3	51	1	0	55	111
Total Volume	6	1	0	0	7	27	3	30	0	60	2	149	15	1	167	15	302	4	0	321	555
\% App. Total	85.7	14.3	0	0		45	5	50	0		1.2	89.2	9	0.6		4.7	94.1	1.2	0		
PHF	. 750	. 250	. 000	. 000	. 583	. 675	. 375	. 750	. 000	. 750	. 500	. 810	. 750	. 250	. 803	. 625	. 839	. 333	. 000	. 836	. 821

Ridgeview Data
Collection

Commerce City, CO
File Name : 70th and Colorado PM
Site Code : IPO 585
Start Date : 12/16/2021
Page No : 1

	70th Ave Eastbound					70th Ave Westbound					Colorado Blvd Northbound					Colorado Blvd Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	2	0	1	0	3	2	0	11	1	14	0	74	5	2	81	11	65	2	0	78	176
04:15 PM	1	0	0	0	1	7	1	13	0	21	0	73	9	1	83	8	58	5	0	71	176
04:30 PM	4	2	1	0	7	4	0	10	0	14	0	95	15	4	114	7	52	1	0	60	195
04:45 PM	1	0	1	2	4	2	0	8	0	10	0	77	6	0	83	2	47	2	2	53	150
Total	8	2	3	2	15	15	1	42	1	59	0	319	35	7	361	28	222	10	2	262	697
05:00 PM	2	3	1	0	6	2	2	16	0	20	0	62	9	0	71	6	54	3	0	63	160
05:15 PM	1	1	0	0	2	2	0	11	0	13	0	60	9	1	70	8	35	2	0	45	130
05:30 PM	2	2	0	0	4	0	0	6	0	6	1	44	4	0	49	2	23	3	0	28	87
05:45 PM	3	0	1	0	4	2	0	9	0	11	0	44	3	1	48	6	37	1	0	44	107
Total	8	6	2	0	16	6	2	42	0	50	1	210	25	2	238	22	149	9	0	180	484
Grand Total	16	8	5	2	31	21	3	84	1	109	1	529	60	9	599	50	371	19	2	442	1181
Apprch \%	51.6	25.8	16.1	6.5		19.3	2.8	77.1	0.9		0.2	88.3	10	1.5		11.3	83.9	4.3	0.5		
Total \%	1.4	0.7	0.4	0.2	2.6	1.8	0.3	7.1	0.1	9.2	0.1	44.8	5.1	0.8	50.7	4.2	31.4	1.6	0.2	37.4	
Automobiles	16	6	5	0	27	21	2	84	0	107	1	529	60	0	590	50	371	19	0	440	1164
\% Automobiles	100	75	100	0	87.1	100	66.7	100	0	98.2	100	100	100	0	98.5	100	100	100	0	99.5	98.6
Bicycle and Pedestrian	0	2	0	2	4	0	1	0	1	2	0	0	0	9	9	0	0	0	2	2	17
\% Bicycle and	0	25	0	100	12.9	0	33.3	0	100	1.8	0	0	0	100	1.5	0	0	0	100	0.5	1.4

Ridgeview Data

Commerce City, CO
File Name : 70th and Colorado PM 7001 Colorado Blvd

Site Code : IPO 585
PM Peak
Start Date : 12/16/2021
70th Ave and Colorado Blvd

Ridgeview Data
Collection

Commerce City, CO
File Name : 70th and Colorado PM
Site Code : IPO 585
7001 Colorado Blvd
Start Date : 12/16/2021
PM Peak
Page No : 3

	70th Ave Eastbound					70th Ave Westbound					Colorado Blvd Northbound					Colorado Blvd Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:00 PM																					
04:00 PM	2	0	1	0	3	2	0	11	1	14	0	74	5	2	81	11	65	2	0	78	176
04:15 PM	1	0	0	0	1	7	1	13	0	21	0	73	9	1	83	8	58	5	0	71	176
04:30 PM	4	2	1	0	7	4	0	10	0	14	0	95	15	4	114	7	52	1	0	60	195
04:45 PM	1	0	1	2	4	2	0	8	0	10	0	77	6	0	83	2	47	2	2	53	150
Total Volume	8	2	3	2	15	15	1	42	1	59	0	319	35	7	361	28	222	10	2	262	697
\% App. Total	53.3	13.3	20	13.3		25.4	1.7	71.2	1.7		0	88.4	9.7	1.9		10.7	84.7	3.8	0.8		
PHF	. 500	. 250	. 750	. 250	. 536	. 536	. 250	. 808	. 250	. 702	. 000	. 839	. 583	. 438	. 792	. 636	. 854	. 500	. 250	. 840	. 894

www.idaxdata.com

www.idaxdata.com

Four-Hour Count Summaries																		
Interval Start	68TH AVE				68TH AVE				COLORADO BLVD				COLORADO BLVD				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	7	1	0	0	2	0	4	0	0	31	0	0	12	23	6	86	0
2:15 PM	0	1	1	0	0	1	1	8	0	0	30	3	2	5	29	10	91	0
2:30 PM	0	7	4	2	0	0	2	9	0	1	46	3	0	15	38	2	129	0
2:45 PM	0	13	1	1	0	0	1	9	0	2	42	6	1	17	49	1	143	449
3:00 PM	1	9	9	1	0	3	0	6	0	5	59	2	0	18	37	7	157	520
3:15 PM	0	6	1	0	0	2	1	10	0	0	52	0	1	17	45	6	141	570
3:30 PM	0	24	6	2	0	0	3	9	0	3	62	0	0	15	29	14	167	608
3:45 PM	0	11	9	0	0	1	2	12	0	2	71	3	0	15	47	4	177	642
4:00 PM	0	26	5	6	0	0	6	11	0	3	64	3	0	21	43	9	197	682
4:15 PM	0	9	7	2	0	2	1	9	0	0	52	4	0	21	39	4	150	691
4:30 PM	0	19	5	3	0	1	1	15	0	2	90	4	0	21	39	5	205	729
4:45 PM	0	6	0	5	0	5	1	17	0	0	88	3	0	16	35	0	176	728
5:00 PM	0	3	0	0	0	4	0	15	0	0	77	4	0	20	32	0	155	686
5:15 PM	0	1	0	0	0	3	0	10	0	0	46	5	0	16	25	0	106	642
5:30 PM	0	3	0	0	0	3	1	10	0	0	63	2	0	14	23	1	120	557
5:45 PM	0	1	0	0	0	1	0	16	0	0	43	3	0	13	20	0	97	478
Count Total	1	146	49	22	0	28	20	170	0	18	916	45	4	256	553	69	2,297	0
All	0	65	26	11	0	4	10	47	0	7	277	14	0	78	168	22	729	0
Peak Hour HV		1		2	0	1			0	5	44	0	0	3	58	16	137	0
Hour HV\%		2\%	4\%	18\%	-	25\%	60\%	0\%	-	71\%	16\%	0\%	-	4\%	35\%	73\%	19\%	0
Note: Four-hour	coun	summ	ary vo	volumes in	include	heavy	vehicles	but ex	ude	bicycles	s in ove	rall cou						
Interval		Hea	y Ve	ehicle To	otals					ycles					edestria	ns (Cro	ossing Le	
Start	EB	WB		NB	SB	Total	EB	WB		NB	SB	Total	East		West	North	South	h Total
2:00 PM	1	2		13	20	36	0	0		0	0	0	0		0	0	0	0
2:15 PM	0	2		11	17	30	0	0		0	0	0	0		0	0	0	0
2:30 PM	1	2		14	19	36	0	0		0	0	0	0		0	0	1	1
2:45 PM	2	0		14	20	36	0	0		0	0	0	0		0	0	0	0
3:00 PM	0	0		14	16	30	1	0		0	0	1	0		0	0	0	0
3:15 PM	2	1		12	29	44	0	0		0	0	0	0		0	1	0	1
3:30 PM	3	2		22	24	51	0	0		0	0	0	0		0	0	0	0
3:45 PM	0	1		18	14	33	0	0		0	0	0	0		0	0	0	0
4:00 PM	2	4		11	22	39	0	0		0	0	0	0		0	0	0	0
4:15 PM	1	1		7	25	34	0	0		1	0	1	0		0	0	0	0
4:30 PM	1	1		13	16	31	0	0		0	0	0	0		0	0	0	0
4:45 PM	5	2		10	8	25	0	0		0	0	0	0		1	0	0	1
5:00 PM	0	1		9	16	26	0	0		0	0	0	0		0	1	1	2
5:15 PM	0	0		3	8	11	0	0		0	0	0	0		0	0	1	1
5:30 PM	0	1		8	12	21	0	0		0	0	0	0		0	0	0	0
5:45 PM	0	1		4	5	10	0	0		0	0	0	0		0	0	0	0
Count Total	18	21		183	271	493	1	0		1	0	2	0		1	2	3	6
Peak Hour	4	7		49	77	137	0	0		1	0	1	0		0	0	0	0

Four-Hour Count Summaries - Heavy Vehicles

Interval Start	68TH AVE				68TH AVE				COLORADO BLVD				COLORADO BLVD				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
2:00 PM	0	1	0	0	0	1	0	1	0	0	13	0	0	1	15	4	36	0
2:15 PM	0	0	0	0	0	1	1	0	0	0	11	0	0	0	11	6	30	0
2:30 PM	0	1	0	0	0	0	2	0	0	0	14	0	0	1	18	0	36	0
2:45 PM	0	2	0	0	0	0	0	0	0	0	14	0	0	0	19	1	36	138
3:00 PM	0	0	0	0	0	0	0	0	0	2	12	0	0	0	13	3	30	132
3:15 PM	0	2	0	0	0	0	1	0	0	0	12	0	0	3	20	6	44	146
3:30 PM	0	3	0	0	0	0	2	0	0	2	20	0	0	1	10	13	51	161
3:45 PM	0	0	0	0	0	0	1	0	0	1	17	0	0	0	12	2	33	158
4:00 PM	0	0	0	2	0	0	4	0	0	2	9	0	0	1	14	7	39	167
4:15 PM	0	1	0	0	0	0	1	0	0	0	7	0	0	1	20	4	34	157
4:30 PM	0	0	1	0	0	1	0	0	0	2	11	0	0	1	12	3	31	137
4:45 PM	0	1	0	4	0	0	0	2	0	0	10	0	0	2	6	0	25	129
5:00 PM	0	0	0	0	0	0	0	1	0	0	8	1	0	2	14	0	26	116
5:15 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	1	7	0	11	93
5:30 PM	0	0	0	0	0	0	0	1	0	0	8	0	0	0	11	1	21	83
5:45 PM	0	0	0	0	0	0	0	1	0	0	4	0	0	0	5	0	10	68
Count Total	0	11	1	6	0	3	12	6	0	9	173	1	0	14	207	50	493	0
Peak Hour	0	1	1	2	0	1	6	0	0	5	44	0	0	3	58	16	137	0

Four-Hour Count Summaries - Bikes

Interval Start	68TH AVE			68TH AVE			COLORADO BLVD			COLORADO BLVD			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	1
3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	1
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	1	0	0	0	0	0	1	0	0	0	0	2	0
Peak Hour	0	0	0	0	0	0	0	1	0	0	0	0	1	0
Note: U-Turn volumes for bikes are included in Left-Turn, if any.														

APPENDIX B

Future Traffic Projections

DRCOG Traffic Projections: 7001 Colorado Blvd

Location	Daily Volumes			
	$\mathbf{2 0 1 5}$		$\mathbf{2 0 4 0}$	Growth Factor
	Annual Growth			
Colorado Blvd N/O 72nd Ave	5,000	$\mathbf{7 , 0 0 0}$	1.40	1.4%
Colorado Blvd S/O 72nd Ave	2,000	3,000	1.50	1.6%
Total	$\mathbf{7 , 0 0 0}$	$\mathbf{1 0 , 0 0 0}$	$\mathbf{1 . 4 3}$	$\mathbf{1 . 4 \%}$

APPENDIX C

Trip Generation Worksheets

Kimley»Horn

Project 7001 Colorado Boulevard
Subject Trip Generation for Multifamily Housing (Mid-Rise)

Designed by	TES	Date	January 06, 2022	Job No. 096216004
Checked by		Date		Sheet No. of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Fitted Curve Equations
Land Use Code - Multifamily Housing (Mid-Rise) (221)
Independent Variable - Dwelling Units (X)

$$
\begin{aligned}
& X=92 \\
& T=\text { Average Vehicle Trip Ends }
\end{aligned}
$$

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (200 Series Page 275)
Directional Distribution: 23% ent. 77% exit.
$(T)=0.44(X)-11.61$
$(T)=0.44$ * (92.0) $\quad-11.61$
$\mathrm{T}=30 \quad$ Average Vehicle Trip Ends
7 entering 23 exiting
$7+23=30$
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (200 Series Page 276)
$(T)=0.39(X)+0.34$
$(T)=0.39$ * (92.0) +0.34

Directional Distribution: 61\% ent. 39\% exit. $\begin{array}{cccc}\mathrm{T}= & 38 & \text { Average Vehicle Trip Ends } \\ 23 & \text { entering } & 15 & \text { exiting }\end{array}$ $23+15=38$

Weekday (200 Series Page 274)
$(T)=4.77(X)-46.46$
$(T)=4.77^{*} \quad$ (92.0) -46.46

Directional Distribution: 50% ent. 50% exit. $\mathrm{T}=394 \quad$ Average Vehicle Trip Ends

197 entering 197 exiting
$197+197=394$

APPENDIX D

Intersection Analysis Worksheets

Intersection												
Int Delay, s/veh	3.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&		${ }^{*}$	\uparrow		\%	4	${ }^{1}$	*	4	「
Traffic Vol, veh/h	26	1	1	22	5	96	2	237	8	159	402	35
Future Vol, veh/h	26	1	1	22	5	96	2	237	8	159	402	35
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	100	-	-	100	-	0	75	-	100
Veh in Median Storage, \#		1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	27	1	1	23	5	101	2	249	8	167	423	37

Intersection													

Intersection												
Int Delay, s/veh	3.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢		${ }^{7}$	\uparrow		\%	4	「	${ }^{7}$	4	「
Traffic Vol, veh/h	27	1	1	23	5	100	2	247	8	166	419	36
Future Vol, veh/h	27	1	1	23	5	100	2	247	8	166	419	36
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	100	-	-	100	-	0	75	-	100
Veh in Median Storage, \#		1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	28	1	1	24	5	105	2	260	8	175	441	38

Intersection													

Intersection													

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*		${ }^{7}$	F		${ }^{1}$	4	「	${ }^{7}$	4	「
Traffic Vol, veh/h	16	15	5	29	2	177	0	418	27	129	282	29
Future Vol, veh/h	16	15	5	29	2	177	0	418	27	129	282	29
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	100	-	-	100	-	0	75	-	100
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	16	15	5	30	2	181	0	427	28	132	288	30

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 17.3 |
| Intersection LOS | C |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$	F		${ }^{1}$	4	「	${ }^{*}$	4	「
Traffic Vol, veh/h	27	1	1	24	5	100	2	256	13	166	422	36
Future Vol, veh/h	27	1	1	24	5	100	2	256	13	166	422	36
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	28	1	1	25	5	105	2	269	14	175	444	38
Number of Lanes	0	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	11.4			11.1			15.4			19.6		
HCM LOS	B			B			C			C		

| Lane | NBLn1 | NBLn2 | NBLn3 | EBLn1 | WBLn1 | WBLn2 | SBLn1 | SBLn2 | SBLn3 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Vol Left, \% | 100% | 0% | 0% | 93% | 100% | 0% | 100% | 0% | 0% |
| Vol Thru, \% | 0% | 100% | 0% | 3% | 0% | 5% | 0% | 100% | 0% |
| Vol Right, \% | 0% | 0% | 100% | 3% | 0% | 95% | 0% | 0% | 100% |
| Sign Control | Stop |
| Traffic Vol by Lane | 2 | 256 | 13 | 29 | 24 | 105 | 166 | 422 | 36 |
| LT Vol | 2 | 0 | 0 | 27 | 24 | 0 | 166 | 0 | 0 |
| Through Vol | 0 | 256 | 0 | 1 | 0 | 5 | 0 | 422 | 0 |
| RT Vol | 0 | 0 | 13 | 1 | 0 | 100 | 0 | 0 | 36 |
| Lane Flow Rate | 2 | 269 | 14 | 31 | 25 | 111 | 175 | 444 | 38 |
| Geometry Grp | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| Degree of Util (X) | 0.004 | 0.495 | 0.022 | 0.068 | 0.055 | 0.203 | 0.314 | 0.735 | 0.055 |
| Departure Headway (Hd) | 7.125 | 6.619 | 5.912 | 7.995 | 7.771 | 6.599 | 6.459 | 5.954 | 5.247 |
| Convergence, Y/N | Yes |
| Cap | 501 | 5542 | 602 | 446 | 459 | 542 | 556 | 604 | 680 |
| Service Time | 4.892 | 4.386 | 3.678 | 5.781 | 5.545 | 4.373 | 4.209 | 3.004 | 2.997 |
| HCM Lane V/C Ratio | 0.004 | 0.496 | 0.023 | 0.07 | 0.054 | 0.205 | 0.315 | 0.735 | 0.056 |
| HCM Control Delay | 9.9 | 15.8 | 8.8 | 11.4 | 11 | 11.1 | 12.2 | 23.5 | 8.3 |
| HCM Lane LOS | A | C | A | B | B | B | B | C | A |
| HCM 95th-tile Q | 0 | 2.7 | 0.1 | 0.2 | 0.2 | 0.8 | 1.3 | 6.3 | 0.2 |

Intersection	
Intersection Delay, s/veh $\quad 20.7$	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$	F		${ }^{1}$	4	「	${ }^{*}$	4	「
Traffic Vol, veh/h	16	15	5	29	2	177	0	418	27	129	282	29
Future Vol, veh/h	16	15	5	29	2	177	0	418	27	129	282	29
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	16	15	5	30	2	181	0	427	28	132	288	30
Number of Lanes	0	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	11.9			13.1			30.1			15.6		
HCM LOS	B			B			D			C		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left, \%	0%	0%	0%	44%	100%	0%	100%	0%	0%
Vol Thu, $\%$	100%	100%	0%	42%	0%	1%	0%	100%	0%
Vol Right, $\%$	0%	0%	100%	14%	0%	99%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	0	418	27	36	29	179	129	282	29
LT Vol	0	0	0	16	29	0	129	0	0
Through Vol	0	418	0	15	0	2	0	282	0
RT Vol	0	0	27	5	0	177	0	0	29
Lane Flow Rate	0	427	28	37	30	183	132	288	30
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0	0.802	0.046	0.085	0.067	0.351	0.268	0.545	0.05
Departure Headway (Hd)	6.766	6.766	6.055	8.332	8.135	6.923	7.331	6.823	6.129
Convergence, Y/N	Yes								
Cap	0	537	595	429	440	519	490	529	586
Service Time	4.467	4.467	3.756	6.092	5.883	4.67	5.074	4.565	3.853
HCM Lane V/C Ratio	0	0.795	0.047	0.086	0.068	0.353	0.269	0.544	0.051
HCM Control Delay	9.5	31.5	9	11.9	11.5	13.4	12.8	17.5	9.2
HCM Lane LOS	N	D	A	B	B	B	B	C	A
HCM 95th-tile Q	0	7.7	0.1	0.3	0.2	1.6	1.1	3.2	0.2

Intersection												
Int Delay, s/veh	4.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&		${ }^{7}$	\uparrow		\%	4	「	*	4	「
Traffic Vol, veh/h	36	1	1	31	7	134	3	331	11	222	561	49
Future Vol, veh/h	36	1	1	31	7	134	3	331	11	222	561	49
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	100	-	-	100	-	0	75	-	100
Veh in Median Storage, \#		1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	38	1	1	33	7	141	3	348	12	234	591	52

Intersection												
Int Delay, s/veh	7.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&		${ }^{7}$	F		${ }^{*}$	4	「	${ }^{7}$	4	「
Traffic Vol, veh/h	21	20	7	32	3	237	0	551	32	173	366	39
Future Vol, veh/h	21	20	7	32	3	237	0	551	32	173	366	39
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	100	-	-	100	-	0	75	-	100
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	20	7	33	3	242	0	562	33	177	373	40

1: Colorado Blvd \& 72nd Ave
04/20/2022

Synchro 11 Report
Page 1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		${ }^{4}$	\uparrow		${ }^{1}$	4	「	${ }^{7}$	4	「
Traffic Volume (veh/h)	36	1	1	32	7	134	3	340	16	222	564	49
Future Volume (veh/h)	36	1	1	32	7	134	3	340	16	222	564	49
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	38	1	1	34	7	141	3	358	17	234	594	52
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	140	4	2	320	11	213	589	1422	1205	789	1422	1205
Arrive On Green	0.14	0.14	0.14	0.14	0.14	0.14	0.76	0.76	0.76	0.76	0.76	0.76
Sat Flow, veh/h	443	27	12	1415	76	1521	785	1870	1585	1008	1870	1585
Grp Volume(v), veh/h	40	0	0	34	0	148	3	358	17	234	594	52
Grp Sat Flow(s), veh/h/ln	482	0	0	1415	0	1597	785	1870	1585	1008	1870	1585
Q Serve(g_s), s	2.6	0.0	0.0	0.0	0.0	7.9	0.1	5.1	0.2	8.1	10.0	0.7
Cycle Q Clear(g_c), s	10.6	0.0	0.0	1.5	0.0	7.9	10.2	5.1	0.2	13.2	10.0	0.7
Prop In Lane	0.95		0.02	1.00		0.95	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	145	0	0	320	0	223	589	1422	1205	789	1422	1205
V/C Ratio(X)	0.28	0.00	0.00	0.11	0.00	0.66	0.01	0.25	0.01	0.30	0.42	0.04
Avail Cap(c_a), veh/h	284	0	0	476	0	399	589	1422	1205	789	1422	1205
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	41.2	0.0	0.0	33.9	0.0	36.7	5.6	3.2	2.6	5.2	3.8	2.7
Incr Delay (d2), s/veh	1.0	0.0	0.0	0.1	0.0	3.4	0.0	0.4	0.0	1.0	0.9	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.9	0.0	0.0	0.7	0.0	3.2	0.0	1.5	0.1	1.6	3.1	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	42.2	0.0	0.0	34.1	0.0	40.1	5.6	3.6	2.6	6.1	4.7	2.7
LnGrp LOS	D	A	A	C	A	D	A	A	A	A	A	A
Approach Vol, veh/h		40			182			378			880	
Approach Delay, s/veh		42.2			38.9			3.6			5.0	
Approach LOS		D			D			A			A	
Timer - Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R c$), s		72.9		17.1		72.9		17.1				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		58.5		22.5		58.5		22.5				
Max Q Clear Time (g_c+11), s		12.2		12.6		15.2		9.9				
Green Ext Time (p_c), s		2.5		0.1		6.3		0.7				
Intersection Summary												
HCM 6th Ctrl Delay			9.8									
HCM 6th LOS			A									

1: Colorado Blvd \& 72nd Ave

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{4}$	\uparrow		${ }^{1}$	4	「	${ }^{7}$	4	「
Traffic Volume (veh/h)	21	20	7	37	3	237	0	557	35	173	375	39
Future Volume (veh/h)	21	20	7	37	3	237	0	557	35	173	375	39
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	21	20	7	38	3	242	0	568	36	177	383	40
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	78	64	14	261	4	286	80	1342	1138	565	1342	1138
Arrive On Green	0.18	0.18	0.18	0.18	0.18	0.18	0.00	0.72	0.72	0.72	0.72	0.72
Sat Flow, veh/h	114	350	79	1383	19	1569	964	1870	1585	816	1870	1585
Grp Volume(v), veh/h	48	0	0	38	0	245	0	568	36	177	383	40
Grp Sat Flow(s), veh/h/ln	543	0	0	1383	0	1588	964	1870	1585	816	1870	1585
Q Serve(g_s), s	0.4	0.0	0.0	0.0	0.0	13.4	0.0	11.1	0.6	10.1	6.5	0.7
Cycle Q Clear(g_c), s	13.8	0.0	0.0	3.2	0.0	13.4	0.0	11.1	0.6	21.2	6.5	0.7
Prop In Lane	0.44		0.15	1.00		0.99	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	156	0	0	261	0	290	80	1342	1138	565	1342	1138
V/C Ratio(X)	0.31	0.00	0.00	0.15	0.00	0.85	0.00	0.42	0.03	0.31	0.29	0.04
Avail Cap(c_a), veh/h	269	0	0	370	0	415	80	1342	1138	565	1342	1138
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	31.6	0.0	0.0	31.4	0.0	35.6	0.0	5.2	3.7	9.4	4.5	3.7
Incr Delay (d2), s/veh	1.1	0.0	0.0	0.3	0.0	10.6	0.0	1.0	0.1	1.4	0.5	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.9	0.0	0.0	0.7	0.0	5.9	0.0	3.8	0.2	1.9	2.2	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	32.7	0.0	0.0	31.6	0.0	46.2	0.0	6.1	3.7	10.9	5.0	3.7
LnGrp LOS	C	A	A	C	A	D	A	A	A	B	A	A
Approach Vol, veh/h		48			283			604			600	
Approach Delay, s/veh		32.7			44.3			6.0			6.7	
Approach LOS		C			D			A			A	
Timer - Assigned Phs		2		4		6		8				
Phs Duration ($G+Y+R c$), s		69.1		20.9		69.1		20.9				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s		4.5		4.5		4.5		4.5				
Max Green Setting (Gmax), s		57.5		23.5		57.5		23.5				
Max Q Clear Time (g_c+11), s		13.1		15.8		23.2		15.4				
Green Ext Time (p_c), s		4.5		0.1		4.1		1.0				
Intersection Summary												
HCM 6th Ctrl Delay			14.1									
HCM 6th LOS			B									

Intersection	
Intersection Delay, s/veh	48.7
Intersection LOS	E

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$	F		${ }^{1}$	4	「	${ }^{*}$	4	「
Traffic Vol, veh/h	36	1	1	32	7	134	3	340	16	222	564	49
Future Vol, veh/h	36	1	1	32	7	134	3	340	16	222	564	49
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	38	1	1	34	7	141	3	358	17	234	594	52
Number of Lanes	0	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	13.1			13.6			27.3			66.8		
HCM LOS	B			B			D			F		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left, \%	100%	0%	0%	95%	100%	0%	100%	0%	0%
Vol Thu, \%	0%	100%	0%	3%	0%	5%	0%	100%	0%
Vol Right, \%	0%	0%	100%	3%	0%	95%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	3	340	16	38	32	141	222	564	49
LT Vol	3	0	0	36	32	0	222	0	0
Through Vol	0	340	0	1	0	7	0	564	0
RT Vol	0	0	16	1	0	134	0	0	49
Lane Flow Rate	3	358	17	40	34	148	234	594	52
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0.007	0.731	0.031	0.101	0.081	0.309	0.463	1.094	0.085
Departure Headway (Hd)	8.113	7.603	6.89	9.36	8.918	7.735	7.138	6.631	5.92
Convergence, Y/N	Yes								
Cap	444	480	523	385	404	468	502	546	600
Service Time	5.813	5.303	4.59	7.06	6.618	5.435	4.922	4.414	3.703
HCM Lane V/C Ratio	0.007	0.746	0.033	0.104	0.084	0.316	0.466	1.088	0.087
HCM Control Delay	10.9	28.3	9.8	13.1	12.4	13.9	16	91.8	9.3
HCM Lane LOS	B	D	A	B	B	B	C	F	A
HCM 95th-tile Q	0	5.9	0.1	0.3	0.3	1.3	2.4	18.3	0.3

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 67.6 |
| Intersection LOS | F |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		${ }^{*}$	F		${ }^{1}$	4	「	${ }^{*}$	4	「
Traffic Vol, veh/h	21	20	7	37	3	237	0	557	35	173	375	39
Future Vol, veh/h	21	20	7	37	3	237	0	557	35	173	375	39
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	20	7	38	3	242	0	568	36	177	383	40
Number of Lanes	0	1	0	1	1	0	1	1	1	1	1	1
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			3			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	3			3			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			3			2			1		
HCM Control Delay	14.3			18.8			133.6			28.3		
HCM LOS	B			C			F			D		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	WBLn1	WBLn2	SBLn1	SBLn2	SBLn3
Vol Left, \%	0%	0%	0%	44%	100%	0%	100%	0%	0%
Vol Thru, \%	100%	100%	0%	42%	0%	1%	0%	100%	0%
Vol Right, \%	0%	0%	100%	15%	0%	99%	0%	0%	100%
Sign Control	Stop								
Traffic Vol by Lane	0	557	35	48	37	240	173	375	39
LT Vol	0	0	0	21	37	0	173	0	0
Through Vol	0	557	0	20	0	3	0	375	0
RT Vol	0	0	35	7	0	237	0	0	39
Lane Flow Rate	0	568	36	49	38	245	177	383	40
Geometry Grp	8	8	8	8	8	8	8	8	8
Degree of Util (X)	0	1.219	0.07	0.129	0.093	0.524	0.393	0.798	0.075
Departure Headway (Hd)	7.724	7.724	7.006	10.088	9.491	8.261	8.532	8.017	7.297
Convergence, Y/N	Yes								
Cap	0	472	514	358	380	438	425	455	494
Service Time	5.429	5.429	4.711	7.788	7.191	5.961	6.232	5.717	4.997
HCM Lane V/C Ratio	0	1.203	0.07	0.137	0.1	0.559	0.416	0.842	0.081
HCM Control Delay	10.4	141.4	10.2	14.3	13.2	19.7	16.6	35.6	10.6
HCM Lane LOS	N	F	B	B	B	C	C	E	B
HCM 95th-tile Q	0	22.3	0.2	0.4	0.3	3	1.8	7.2	0.2

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 10.3 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\&			\&	
Traffic Vol, veh/h	6	1	0	27	3	30	2	149	15	15	302	4
Future Vol, veh/h	6	1	0	27	3	30	2	149	15	15	302	4
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	1	0	33	4	37	2	182	18	18	368	5
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.7			8.7			9.1			11.3		
HCM LOS	A			A			A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	1%	86%	45%	5%
Vol Thru, \%	90%	14%	5%	94%
Vol Right, \%	9%	0%	50%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	166	7	60	321
LT Vol	2	6	27	15
Through Vol	149	1	3	302
RT Vol	15	0	30	4
Lane Flow Rate	202	9	73	391
Geometry Grp	1	1	1	1
Degree of Util (X)	0.253	0.013	0.102	0.474
Departure Headway (Hd)	4.498	5.529	5.038	4.361
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	798	645	710	826
Service Time	2.526	3.579	3.08	2.384
HCM Lane V/C Ratio	0.253	0.014	0.103	0.473
HCM Control Delay	9.1	8.7	8.7	11.3
HCM Lane LOS	A	A	A	B
HCM 95th-tile Q	1	0	0.3	2.6

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 10.7 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			\uparrow			\uparrow	
Traffic Vol, veh/h	8	2	3	15	1	42	0	319	35	28	222	10
Future Vol, veh/h	8	2	3	15	1	42	0	319	35	28	222	10
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	9	2	3	17	1	47	0	358	39	31	249	11
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	8.7			8.6				11.5		10.2		
HCM LOS	A			A				B		B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	0%	62%	26%	11%
Vol Thu, \%	90%	15%	2%	85%
Vol Right, \%	0%	23%	72%	4%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	354	13	58	260
LT Vol	0	8	15	28
Through Vol	319	2	1	222
RT Vol	35	3	42	10
Lane Flow Rate	398	15	65	292
Geometry Grp	1	1	1	1
Degree of Util (X)	0.485	0.022	0.092	0.369
Departure Headway (Hd)	4.394	5.532	5.073	4.551
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	819	644	703	789
Service Time	2.423	3.596	3.127	2.584
HCM Lane V/C Ratio	0.486	0.023	0.092	0.37
HCM Control Delay	11.5	8.7	8.6	10.2
HCM Lane LOS	B	A	A	B
HCM 95th-tile Q	2.7	0.1	0.3	1.7

Intersection		
Intersection Delay, s/veh	10.6	
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			${ }_{*}$			${ }_{*}$	
Traffic Vol, veh/h	6	1	0	28	3	31	2	155	16	16	315	4
Future Vol, veh/h	6	1	0	28	3	31	2	155	16	16	315	4
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	1	0	34	4	38	2	189	20	20	384	5
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.7			8.8			9.2			11.7		
HCM LOS	A			A			A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	1%	86%	45%	5%
Vol Thru, \%	90%	14%	5%	94%
Vol Right, \%	9%	0%	50%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	173	7	62	335
LT Vol	2	6	28	16
Through Vol	155	1	3	315
RT Vol	16	0	31	4
Lane Flow Rate	211	9	76	409
Geometry Grp	1	1	1	1
Degree of Util (X)	0.265	0.013	0.107	0.497
Departure Headway (Hd)	4.525	5.593	5.095	4.379
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	793	637	702	821
Service Time	2.555	3.649	3.141	2.406
HCM Lane V/C Ratio	0.266	0.014	0.108	0.498
HCM Control Delay	9.2	8.7	8.8	11.7
HCM Lane LOS	A	A	A	B
HCM 95th-tile Q	1.1	0	0.4	2.8

Intersection		
Intersection Delay, s/veh	11.1	B
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\uparrow			\uparrow	
Traffic Vol, veh/h	8	2	3	16	1	44	0	333	36	29	231	10
Future Vol, veh/h	8	2	3	16	1	44	0	333	36	29	231	10
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	2	3	18	1	49	0	374	40	33	260	11
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	8.8			8.8				12		10.5		
HCM LOS	A			A				B		B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	0%	62%	26%	11%
Vol Thu, \%	90%	15%	2%	86%
Vol Right, \%	0%	23%	72%	4%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	069	13	61	270
LT Vol	0	8	16	29
Through Vol	333	2	1	231
RT Vol	36	3	44	10
Lane Flow Rate	415	15	69	303
Geometry Grp	1	1	1	1
Degree of Util (X)	0.509	0.023	0.098	0.386
Departure Headway (Hd)	4.419	5.605	5.14	4.582
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	813	635	694	783
Service Time	2.453	3.676	3.199	2.621
HCM Lane V/C Ratio	0.51	0.024	0.099	0.387
HCM Control Delay	12	8.8	8.8	10.5
HCM Lane LOS	B	A	A	B
HCM 95th-tile Q	2.9	0.1	0.3	1.8

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 10.7 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\&			\$			\&	
Traffic Vol, veh/h	6	1	0	28	3	32	2	157	16	18	322	4
Future Vol, veh/h	6	1	0	28	3	32	2	157	16	18	322	4
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	7	1	0	34	4	39	2	191	20	22	393	5
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	8.8			8.8			9.2			11.9		
HCM LOS	A			A			A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	1%	86%	44%	5%
Vol Thru, \%	90%	14%	5%	94%
Vol Right, \%	9%	0%	51%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	175	7	63	344
LT Vol	2	6	28	18
Through Vol	157	1	3	322
RT Vol	16	0	32	4
Lane Flow Rate	213	9	77	420
Geometry Grp	1	1	1	1
Degree of Util (X)	0.269	0.013	0.109	0.511
Departure Headway (Hd)	4.541	5.627	5.119	4.388
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	790	633	698	822
Service Time	2.573	3.685	3.167	2.414
HCM Lane V/C Ratio	0.27	0.014	0.11	0.511
HCM Control Delay	9.2	8.8	8.8	11.9
HCM Lane LOS	A	A	A	B
HCM 95th-tile Q	1.1	0	0.4	3

Intersection		
Intersection Delay, s/veh	11.3	B
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			¢			\uparrow			${ }_{*}$	
Traffic Vol, veh/h	8	2	3	16	1	46	0	340	36	31	236	10
Future Vol, veh/h	8	2	3	16	1	46	0	340	36	31	236	10
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	2	3	18	1	52	0	382	40	35	265	11
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	8.9			8.8				12.2		10.7		
HCM LOS	A			A				B		B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	0%	62%	25%	11%
Vol Thu, \%	90%	15%	2%	85%
Vol Right, \%	0%	23%	73%	4%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	376	13	63	277
LT Vol	0	8	16	31
Through Vol	340	2	1	236
RT Vol	36	3	46	10
Lane Flow Rate	422	15	71	311
Geometry Grp	1	1	1	1
Degree of Util (X)	0.521	0.023	0.102	0.398
Departure Headway (Hd)	4.437	5.648	5.168	4.602
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	811	629	689	781
Service Time	2.474	3.723	3.232	2.642
HCM Lane V/C Ratio	0.52	0.024	0.103	0.398
HCM Control Delay	12.2	8.9	8.8	10.7
HCM Lane LOS	B	A	A	B
HCM 95th-tile Q	3.1	0.1	0.3	1.9

Intersection		
Intersection Delay, s/veh	14.6	
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			\uparrow			\$	
Traffic Vol, veh/h	8	1	0	38	4	42	3	208	21	21	422	6
Future Vol, veh/h	8	1	0	38	4	42	3	208	21	21	422	6
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	10	1	0	46	5	51	4	254	26	26	515	7
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	9.4			9.7			10.8			17.5		
HCM LOS	A			A			B			C		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	1%	89%	45%	5%
Vol Thu, \%	90%	11%	5%	94%
Vol Right, \%	9%	0%	50%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	332	9	84	449
LT Vol	3	8	38	21
Through Vol	208	1	4	422
RT Vol	21	0	42	6
Lane Flow Rate	1	11	102	548
Geometry Grp	1	1	1	
Degree of Util (X)	0.377	0.019	0.159	0.695
Departure Headway (Hd)	4.797	6.283	5.577	4.572
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	744	573	636	788
Service Time	2.863	4.283	3.671	2.627
HCM Lane V/C Ratio	0.38	0.019	0.16	0.695
HCM Control Delay	10.8	9.4	9.7	17.5
HCM Lane LOS	B	A	A	C
HCM 95th-tile Q	1.8	0.1	0.6	5.7

Intersection	
Intersection Delay, s/veh	16
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\$			¢	
Traffic Vol, veh/h	11	3	4	21	1	59	0	445	49	39	310	14
Future Vol, veh/h	11	3	4	21	1	59	0	445	49	39	310	14
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	3	4	24	1	66	0	500	55	44	348	16
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	9.6			9.8				18.8		13.8		
HCM LOS	A			A				C		B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	0%	61%	26%	11%
Vol Thu, \%	90%	17%	1%	85%
Vol Right, \%	0%	22%	73%	4%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	494	18	81	363
LT Vol	0	11	21	39
Through Vol	445	3	1	310
RT Vol	49	4	59	14
Lane Flow Rate	555	20	91	408
Geometry Grp	1	1	1	1
Degree of Util (X)	0.718	0.036	0.147	0.55
Departure Headway (Hd)	4.655	6.39	5.816	4.858
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	772	563	620	734
Service Time	2.734	4.396	3.817	2.946
HCM Lane V/C Ratio	0.719	0.036	0.147	0.556
HCM Control Delay	18.8	9.6	9.8	13.8
HCM Lane LOS	C	A	A	B
HCM 95th-tile Q	6.2	0.1	0.5	3.4

Intersection		
Intersection Delay, s/veh	15	
Intersection LOS	B	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Contigurations		\uparrow			\uparrow			¢			¢	
Traffic Vol, veh/h	8	1	0	38	4	43	3	210	21	23	429	6
Future Vol, veh/h	8	1	0	38	4	43	3	210	21	23	429	6
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	10	1	0	46	5	52	4	256	26	28	523	7
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	9.4			9.8			10.9			18.2		
HCM LOS	A			A			B			C		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	1%	89%	45%	5%
Vol Thru, \%	90%	11%	5%	94%
Vol Right, \%	9%	0%	51%	1%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	234	9	85	458
LT Vol	3	8	38	23
Through Vol	210	1	4	429
RT Vol	21	0	43	6
Lane Flow Rate	285	11	104	559
Geometry Grp	1	1	1	1
Degree of Util (X)	0.382	0.019	0.161	0.711
Departure Headway (Hd)	4.815	6.324	5.602	4.581
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	742	569	633	788
Service Time	2.883	4.324	3.701	2.636
HCM Lane V/C Ratio	0.384	0.019	0.164	0.709
HCM Control Delay	10.9	9.4	9.8	18.2
HCM Lane LOS	B	A	A	C
HCM 95th-tile Q	1.8	0.1	0.6	6.1

Intersection	
Intersection Delay, s/veh $\quad 16.5$	
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow			\uparrow			\uparrow	
Traffic Vol, veh/h	11	3	4	21	1	61	0	452	49	41	315	14
Future Vol, veh/h	11	3	4	21	1	61	0	452	49	41	315	14
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	3	4	24	1	69	0	508	55	46	354	16
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB				NB		SB		
Opposing Approach	WB			EB				SB		NB		
Opposing Lanes	1			1				1		1		
Conflicting Approach Left	SB			NB				EB		WB		
Conflicting Lanes Left	1			1				1		1		
Conflicting Approach Right	NB			SB				WB		EB		
Conflicting Lanes Right	1			1				1		1		
HCM Control Delay	9.7			9.9				19.5		14.2		
HCM LOS	A			A				C		B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	0%	61%	25%	11%
Vol Thu, \%	90%	17%	1%	85%
Vol Right, \%	10%	22%	73%	4%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	501	18	83	370
LT Vol	0	11	21	41
Through Vol	452	3	1	315
RT Vol	49	4	61	14
Lane Flow Rate	563	20	93	416
Geometry Grp	1	1	1	1
Degree of Util (X)	0.731	0.036	0.152	0.563
Departure Headway (Hd)	4.675	6.441	5.851	4.879
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	766	559	616	732
Service Time	2.758	4.448	3.852	2.971
HCM Lane V/C Ratio	0.735	0.036	0.151	0.568
HCM Control Delay	19.5	9.7	9.9	14.2
HCM Lane LOS	C	A	A	B
HCM 95th-tile Q	6.5	0.1	0.5	3.5

Intersection												
Int Delay, s/veh	3.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			\$			\&	
Traffic Vol, veh/h	50	7	17	8	5	45	11	109	5	75	320	24
Future Vol, veh/h	50	7	17	8	5	45	11	109	5	75	320	24
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	52	7	18	8	5	47	11	114	5	78	333	25

$\frac{\text { Intersection }}{}$												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow			\$			\&	
Traffic Vol, veh/h	65	26	11	4	10	47	7	277	14	78	168	22
Future Vol, veh/h	65	26	11	4	10	47	7	277	14	78	168	22
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	73	29	12	4	11	53	8	311	16	88	189	25

Intersection												
Int Delay, s/veh	3.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			\&			\&	
Traffic Vol, veh/h	52	7	18	8	5	48	11	115	5	80	339	25
Future Vol, veh/h	52	7	18	8	5	48	11	115	5	80	339	25
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	54	7	19	8	5	50	11	120	5	83	353	26

Intersection												
Int Delay, s/veh	4.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			\&			\uparrow			¢	
Traffic Vol, veh/h	68	27	11	4	10	51	7	294	15	83	178	23
Future Vol, veh/h	68	27	11	4	10	51	7	294	15	83	178	23
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	76	30	12	4	11	57	8	330	17	93	200	26

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			\$			\$	
Traffic Vol, veh/h	70	10	24	11	7	63	15	152	7	105	447	34
Future Vol, veh/h	70	10	24	11	7	63	15	152	7	105	447	34
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Star	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-		None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	73	10	25	11	7	66	16	158	7	109	466	35

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			4			\uparrow	
Traffic Vol, veh/h	70	10	24	11	7	64	15	153	7	107	452	34
Future Vol, veh/h	70	10	24	11	7	64	15	153	7	107	452	34
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#		1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	73	10	25	11	7	67	16	159	7	111	471	35

Intersection												
Int Delay, s/veh	6.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\$			4			\uparrow	
Traffic Vol, veh/h	91	36	15	6	14	68	10	392	20	111	238	31
Future Vol, veh/h	91	36	15	6	14	68	10	392	20	111	238	31
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#		1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	102	40	17	7	16	76	11	440	22	125	267	35

Intersection												
Int Delay, s/veh 0.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			¢			\ddagger	
Traffic Vol, veh/h	9	0	6	5	0	5	9	385	5	5	270	14
Future Vol, veh/h	9	0	6	5	0	5	9	385	5	5	270	14
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	10	0	7	5	0	5	10	418	5	5	293	15

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1253	-	-	413	424	1136	-

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1253	-	-	414	424	1136	-

HCMLOS C C

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1149	-	-296	307	1007	-	-
HCM Lane V/C Ratio	0.009	-	-0.055	0.035	0.005	-	-
HCM Control Delay (s)	8.2	0	-17.9	17.2	8.6	0	-
HCM Lane LOS	A	A	-	C	C	A	A
HCM 95th \%tile Q(veh)	0	-	-	0.2	0.1	0	-
H							

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&		${ }^{7}$	个			\&	
Traffic Vol, veh/h	14	0	9	5	0	5	3	258	5	5	449	4
Future Vol, veh/h	14	0	9	5	0	5	3	258	5	5	449	4
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	0	-	-	-	-	-
Veh in Median Storage, \#		0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	15	0	10	5	0	5	3	280	5	5	488	4

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&		${ }^{1}$	$\hat{\beta}$			\$	
Traffic Vol, veh/h	9	0	6	5	0	5	9	515	5	5	363	14
Future Vol, veh/h	9	0	6	5	0	5	9	515	5	5	363	14
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	0	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	10	0	7	5	0	5	10	560	5	5	395	15

HCMLOS C C

Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1WBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1149	-	-297	307	1007	-	-
HCM Lane V/C Ratio	0.009	-	-0.055	0.035	0.005	-	-
HCM Control Delay (s)	8.2	-	-	17.8	17.2	8.6	0

APPENDIX E

Signal \& All-Way Stop Control Warrant Worksheets

WARRANT 2 - FOUR HOUR VEHICULAR VOLUME

* NOTE: 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET

SIGNAL WARRANT ANALYSIS
70TH AVE \& COLORADO BLVD
FOUR HOUR VOLUME WARRANT
2045 TRAFFIC DATA POINT
Source: Manual of Uniform Traffic Control Devices 2009

WARRANT 2 - FOUR HOUR VEHICULAR VOLUME

* NOTE: 115 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WTH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.
SIGNAL WARRANT ANALYSIS
72ND AVE \& COLORADO BLVD
FOUR HOUR VOLUME WARRANT
2045 TRAFFIC DATA POINT
Source: Manual of Uniform Traffic Control Devices 2009

All Way Stop Control Warrants: 7001 Colorado Boulevard Project

72nd Avenue \& Colorado Boulevard (2024 Total Traffic Volumes)						
Hour	Minor Volume	Minor Threshold	Met	Major Volume	Major Threshold	Met
7:00 AM - 8:00 AM	160	200		895	300	X
8:00 AM - 9:00 AM	144	200		806	300	X
9:00 AM - 10:00 AM	144^{*}	200		806^{*}	300	X
10:00 AM - 11:00 AM	130^{*}	200		725^{*}	300	X
2:00 PM - 3:00 PM	202^{*}	200	X	717^{*}	300	X
3:00 PM - 4:00 PM	224^{*}	200	X	797^{*}	300	X
4:00 PM - 5:00 PM	249	200	X	885	300	X
5:00 PM - 6:00 PM	224	200	X	797	300	X

* $=90$ Percent Factor Applied

APPENDIX F

Site Access Improvement Exhibit

APPENDIX G

Queue Analysis Worksheets

	\rightarrow	\bigcirc		4	\dagger	7		\ddagger	4
Lane Group	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	40	34	148	3	358	17	234	594	52
v/c Ratio	0.49	0.27	0.54	0.00	0.24	0.01	0.28	0.39	0.04
Control Delay	57.8	42.4	15.4	2.3	2.7	1.1	3.4	3.6	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	57.8	42.4	15.4	2.3	2.7	1.1	3.4	3.6	0.8
Queue Length 50th (ft)	22	18	4	0	34	0	23	67	0
Queue Length 95th (ft)	53	46	57	2	71	4	56	134	7
Internal Link Dist (ft)	213		149		566			1312	
Turn Bay Length (ft)		100		100			75		100
Base Capacity (vph)	219	340	504	626	1505	1282	823	1505	1288
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.18	0.10	0.29	0.00	0.24	0.01	0.28	0.39	0.04

Intersection Summary

	\rightarrow	\checkmark		\dagger	p		$\frac{1}{*}$	\downarrow
Lane Group	EBT	WBL	WBT	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	48	38	245	568	36	177	383	40
v/c Ratio	0.75	0.25	0.66	0.38	0.03	0.28	0.26	0.03
Control Delay	91.1	40.0	14.5	3.7	1.0	3.9	3.0	0.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	91.1	40.0	14.5	3.7	1.0	3.9	3.0	0.9
Queue Length 50th (ft)	23	21	2	62	0	17	37	0
Queue Length 95th (ft)	\#65	47	66	143	6	52	87	7
Internal Link Dist (ft)	213		149	566			1312	
Turn Bay Length (ft)		100				75		100
Base Capacity (vph)	164	421	593	1497	1279	640	1497	1280
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.29	0.09	0.41	0.38	0.03	0.28	0.26	0.03

Intersection Summary

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

APPENDIX H

Conceptual Site Plan

Kimley»Horn

April 21, 2022
City of Commerce City
Attn: Lee Alverson, P.E. Development Review and Coordination Engineer
Public Works Department
8602 Rosemary Street
Commerce City, CO 80022

RE: 7001 Colorado Boulevard
 Preliminary Drainage Letter

The following letter is intended to serve as a preliminary drainage letter for the multi-family development at 7001 Colorado Boulevard, "The Project," which is located Northwest of the intersection of East 70 th Avenue and Colorado Boulevard, and is bounded on the west side by the O'Brien Canal, an irrigation ditch managed by Farmer's Reservoir and Irrigation Company (FRICO). This area was accounted for in the $72^{\text {nd }}$ Avenue and Colorado Boulevard 90\% Drainage Report, prepared by Atkins on July 23, 2018 (the Overall Drainage Report). As such, the project described herein is subject to meeting the criteria and expected design flows as stated within the aforementioned drainage report.

PROJECT DESCRIPTION

The Project consists of the addition of a new multi-family development, and associated widening for a left turn lane to enter the site from the northbound direction on Colorado Blvd. The onsite development will occur on a parcel of land consisting of 3.99 acres. The onsite area will be treated in a proposed water quality and detention pond to the north of the parcel.

The site is currently an unplatted parcel with 3 buildings, gravel parking areas, and limited vegetation. The area is subdivided into 4 different basins per the Overall Drainage Report. These basins are named Basin A-A-CO-IN-1, Basin A-B-CO-IN-1, Basin A-C-CO-IN-1, and Basin A-D-CO-IN-1. These basins total to 5.33 acres with a \% imperviousness of 58%. The site does not have any existing stormwater infrastructure onsite and appears to drain via overland sheet flow towards the south, north or west sides of the site. The drainage map from the Overall Drainage Report indicates that our site falls within tributary area to the Colorado Blvd system.

DESIGN CRITERIA AND APPROACH

The project is intended to be designed in accordance with "City of Commerce City Storm Drainage Design and Technical Criteria Manual," revised December 2021 (the "Criteria") and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 (the "Manual"). The project is subject to the design criteria as stated in the Overall Drainage Report). A proposed Water Quality and Detention pond is proposed on the north side of the site. The preliminary design is per the Criteria and Manual above. Rational Calculations and a MHFD detention spreadsheet calculation are provided as an attachment to this memo.

Kimley»Horn

PROPOSED DRAINAGE CONDITIONS

The development of the Project will include the addition of a left turn lane on Colorado Blvd, five new multi-story apartment buildings and covered parking areas (1.24 acres), surface parking and sidewalks (1.10 acres), and landscaping (1.65 acres) for a site imperviousness of 54%. The runoff coefficients have been calculated as 0.51 and 0.69 for the 5 -year and 100 -year events, respectively. The site will drain by surface flow and then through proposed storm infrastructure from south to north conveyed to curb inlets, or valley inlets. Existing drainage patterns will shift slightly, in accordance with the various plans and studies that anticipate the Project's development. The ultimate pond outfall will drain by standard gravity outfall into the existing storm infrastructure within Colorado Blvd per the Overall Drainage Report. There will be a new driveway cut for the site access, as well as up to two emergency access points. The areas behind the ROW (within the Property) will drain to onsite storm infrastructure, to the extent practical.

The pond emergency overflow will be designed to overflow into the O'Brien Canal to the west. This will only occur in the event of a storm event above the 100 -year occurrence.

CONCLUSIONS

In conclusion, the proposed improvements with this Project are in substantial conformance with the $72^{\text {nd }}$ Avenue and Colorado Boulevard 90\% Drainage Report (July 23, 2018) and are in compliance with City of Commerce City requirements.

KIMLEY-HORN AND ASSOCIATES, INC.

$$
\begin{array}{ll}
\text { By: } & \text { Randall J. Phelps, P.E. } \\
\text { Project Manager }
\end{array}
$$

References:

- $72^{\text {nd }}$ Avenue and Colorado Boulevard 90\% Drainage Report (July 23, 2018)

Attachments:

- FEMA FIRMette Map
- NRCS Web Soil Survey
- Proposed Drainage Plan
- Hydrology Calculations
- Pond Detention Calculation
- Excerpts from 72 ${ }^{\text {nd }}$ Avenue and Colorado Boulevard 90\% Drainage Report
- Excerpts from As-Built E 72 ${ }^{\text {nd }}$ Ave and CO Blvd (21142)

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD HAZARD AREAS	Without Base Flood Elevation (BFE) Zone A,, , A99 With BFE or Depth Zone AE, AO, AH, VE, AR
Regulatory Floodway	

| | Digital Data Available |
| :--- | :--- | :--- |
| $\square: 3$ | No Digital Data Available |
| \square | Unmapped |

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/4/2021 at 10:11 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date, Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 12
Map Unit Descriptions. 12
Adams County Area, Parts of Adams and Denver Counties, Colorado 14
MISLD-Gravel pits 14
Tc-Terrace escarpments 14
VoA-Vona sandy loam, 0 to 1 percent slopes 15
Soil Information for All Uses 17
Soil Properties and Qualities 17
Soil Qualities and Features. 17
Hydrologic Soil Group 17
References 23

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest（AOI）		\％	Spoil Area
Area of Interest（AOI）		6	Stony Spot
Soils	Soil Map Unit Polygons	0	Very Stony Spot
		4	Very Stony Spot
\cdots	Soil Map Unit Lines	3	Wet Spot
		Δ	Other
\square	Soil Map Unit Points		
		＊＊	Special Line Features
Special Point Features			
（0）	Blowout	Water Features	
8	Borrow Pit	\sim	Streams and Canals
		Transportation	
燩	Clay Spot		
		＋＋	Rails
\bigcirc	Closed Depression	\sim	Interstate Highways
S0	Gravel Pit	－	US Routes
$\stackrel{\sim}{*}$	Gravelly Spot	\approx	Major Roads
（3）	Landfill	2	Local Roads
A	Lava Flow	Background	
当	Marsh or swamp		Aerial Photography
犮	Mine or Quarry		
（0）	Miscellaneous Water		
O	Perennial Water		
$*$	Rock Outcrop		
1	Saline Spot		
$\therefore{ }^{\circ}$	Sandy Spot		
을	Severely Eroded Spot		
©	Sinkhole		
3	Slide or Slip		
8	Sodic Spot		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1：20，000．

Warning：Soil Map may not be valid at this scale．
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement．The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale．

Please rely on the bar scale on each map sheet for map measurements．

Source of Map：Natural Resources Conservation Service Web Soil Survey URL：
Coordinate System：Web Mercator（EPSG：3857）

Maps from the Web Soil Survey are based on the Web Mercator projection，which preserves direction and shape but distorts distance and area．A projection that preserves area，such as the Albers equal－area conic projection，should be used if more accurate calculations of distance or area are required．

This product is generated from the USDA－NRCS certified data as of the version date（s）listed below．

Soil Survey Area：Adams County Area，Parts of Adams and Denver Counties，Colorado
Survey Area Data：Version 18，Aug 31， 2021

Soil map units are labeled（as space allows）for map scales 1：50，000 or larger．

Date（s）aerial images were photographed：Oct 20，2018－Oct 26， 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
MISLD	Gravel pits	0.7	Percent of AOI
Tc	Terrace escarpments	3.4	12.2%
VoA	Vona sandy loam, 0 to 1 percent slopes	1.4	62.8%
Totals for Area of Interest		$\mathbf{5 . 5}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Adams County Area, Parts of Adams and Denver Counties, Colorado
 MISLD-Gravel pits

Map Unit Setting

National map unit symbol: 34w6
Mean annual precipitation: 12 to 14 inches
Farmland classification: Not prime farmland

Map Unit Composition

Gravel pits: 100 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gravel Pits

Typical profile
H1-0 to 6 inches: extremely gravelly sand
H2-6 to 60 inches: extremely gravelly sand
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8s
Hydrologic Soil Group: A
Hydric soil rating: No

Tc-Terrace escarpments

Map Unit Setting

National map unit symbol: 34ws
Elevation: 4,400 to 5,500 feet
Mean annual precipitation: 12 to 14 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 120 to 160 days
Farmland classification: Not prime farmland

Map Unit Composition

Terrace escarpments: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Terrace Escarpments

Setting

Landform: Terraces
Landform position (three-dimensional): Riser
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from mixed

Typical profile

H1-0 to 3 inches: gravelly sand

H2-3 to 60 inches: gravelly sand

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Ecological site: R067BY063CO - Gravel Breaks
Hydric soil rating: No

Minor Components

Dacono

Percent of map unit: 5 percent
Hydric soil rating: No

Vona

Percent of map unit: 5 percent
Hydric soil rating: No

VoA—Vona sandy loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 34x9
Elevation: 4,000 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 52 degrees F
Frost-free period: 125 to 155 days
Farmland classification: Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60

Map Unit Composition

Vona and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vona

Setting

Landform: Plains
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian sands

Typical profile

H1-0 to 9 inches: sandy loam
H2-9 to 22 inches: sandy loam
H3-22 to 60 inches: loamy sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches

Custom Soil Resource Report

Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Gypsum, maximum content: 2 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to $4.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: Moderate (about 6.3 inches)

Interpretive groups

Land capability classification (irrigated): 2s
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: A
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No

Minor Components

Dacono

Percent of map unit: 5 percent
Hydric soil rating: No

Truckton

Percent of map unit: 5 percent
Hydric soil rating: No

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

Area of Interest (AOI)		\square	C
	Area of Interest (AOI)	\square	C/D
Soils			D
Soil Rating Polygons		\square	
\square	A	\square	Not rated or not available
\square	A/D	Water Features	
		\sim	Streams and Canals
		Transportation	
\square	B/D	+	Rails
\square	C	\sim	Interstate Highways
\square	C/D	\sim	US Routes
\square	D	\approx	Major Roads
\square	Not rated or not available	-	Local Roads
Soil Rating Lines		Background	
\cdots	A		Aerial Photography
\cdots	A/D		
\cdots	B		
\cdots	B/D		
\cdots	C		
\cdots	C/D		
\cdots	D		
**	Not rated or not available		
Soil Rating Points			
\square	A		
\square	A/D		
\square	B		
\square	B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Adams County Area, Parts of Adams and Denver Counties, Colorado
Survey Area Data: Version 18, Aug 31, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 20, 2018—Oct 26, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
MISLD	Gravel pits	A	0.7	12.2\%
Tc	Terrace escarpments	A	3.4	62.8\%
VoA	Vona sandy loam, 0 to 1 percent slopes	A	1.4	25.1\%
Totals for Area of Interest			5.5	100.0\%

Rating Options-Hydrologic Soil Group

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Kimley»Horn
 STANDARD FORM SF-1

RUNOFF COEFFICIENTS - IMPERVIOUS CALCULATION

PROJECT NAME: 7001 Colorado Blvd
PROJECT NUMBER: 96216004
CALCULATED BY: JMD
CHECKED BY:
SOIL: Hydrologic Group A (NRCS Soil Survey)

Kim\|ey >) Horn $\begin{array}{r}\text { STANDARD FORM SF-2 } \\ \text { Time of Concentration }\end{array}$																
PROJECT NAME: 7001 Colorado Blvd DATE: 3/18/2022 PROJECT NUMBER: 96216004 CALCULATED BY: JMD CHECKED BY:																
$\begin{gathered} \hline \text { SUB-BASIN } \\ \text { DATA } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { INITIAL } \\ \text { TIME (} \mathbf{T}_{\mathbf{i}} \text {) } \end{gathered}$			$\begin{aligned} & \text { TRAVEL TIME } \\ & \left(\mathrm{T}_{\mathrm{t}}\right) \end{aligned}$					Tc CHECK(URBANIZED BASINS)					$\begin{gathered} \hline \text { FINAL } \\ \text { Tc } \\ \hline \end{gathered}$
DESIGN BASIN (1)	$\begin{gathered} \hline \text { AREA } \\ \text { Ac } \\ \text { (2) } \\ \hline \end{gathered}$	C5 (3)	 LENGTH Ft (4)	$\begin{gathered} \hline \text { SLOPE } \\ \% \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} T_{i} \\ \text { Min. } \\ (6) \end{gathered}$	LENGTH Ft. (7)	$\begin{gathered} \hline \text { SLOPE } \\ \% \\ (8) \\ \hline \end{gathered}$	C_{v} (9)	$\begin{gathered} \hline \text { VEL } \\ \text { fps } \\ (11) \\ \hline \end{gathered}$	T_{t} Min. (12)	$\begin{gathered} \hline \text { COMP. } \\ \text { tc } \\ (13) \\ \hline \end{gathered}$	TOTAL LENGTH (14)	TOTAL SLOPE (15)	TOTAL IMP. (16)	$\begin{gathered} \hline \text { Tc } \\ \text { Min. } \\ (17) \\ \hline \end{gathered}$	Min.
On-Site Basins																
A1	3.990	0.545	300	2.0\%	14.0	685	2.0\%	20.0	2.8	4.0	18.0	985	2.0\%	54\%	23.7	18.0
$t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{o}^{0.33}}$			$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$				$t_{t}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$									

DETENTION BASIN OUTLET STRUCTURE DESIGN

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
(WQCV)	1.32	0.072	Orifice Plate
! (EURV)	3.18	0.182	Orifice Plate
00-year)	4.13	0.127	Weir\&Pipe (Restrict)
	Total (all zones)	0.381	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underd	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	ft^{2}
	N/A			N/A	feet
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row	5.903E-03	ft^{2}
Depth at top of Zone using Orifice Plate $=$	3.18	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	12.70	inches	Elliptical Slot Centroid $=$	N/A	feet
Orifice Plate: Orifice Area per Row $=$	0.85	sq. inches (diameter = 1 inch)	Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.06	2.12					
Orifice Area (sq. inches)	0.85	0.85	0.85					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	kow 15 (optiona	kow 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Recta Invert of Vertical Orifice $=$	ular)		
	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	
Vertical Orifice Diameter $=$	N/A	N/A	inches

	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected	
Vertical Orifice Area $=$	N/A	N/A	ft^{2}
Vertical Orifice Centroid $=$	N/A	N/A	feet

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, $\mathrm{Ho}=$	Zone 3 Weir	Not Selected
	3.20	N/A
Overflow Weir Front Edge Length =	3.00	N/A
Overflow Weir Grate Slope =	0.00	N/A
Horiz. Length of Weir Sides =	3.00	N/A
Overflow Grate Type =	Type C Grate	N/A
Debris Clogging \% =	50\%	N/A

(and No Outlet Pipe)
$=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$
Overflow Weir Slope Length
Grate Open Area / 100-yr Orifice Area $=$
Overflow Grate Open Area w/o Debris $=$
Overflow Grate Open Area w/ Debris $=$

Calculated Parameters for Overflow Weir		
Zone 3 Weir	Not Selected	
3.20	N/A	feet
3.00	N/A	feet
1.99	N/A	
6.26	N/A	ft^{2}
3.13	N/A	ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)				Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restricto	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area $=$ Outlet Orifice Centroid =	Zone 3 Restrictd	Not Selected	$f_{\mathrm{ft}^{2}}$
	0.00	N/A			3.14	N/A	
	24.00	N/A			1.00	N/A	
Restrictor Plate Height Above Pipe Invert =	24.00		inches Half-Central	Restrictor Plate on Pipe $=$	3.14	N/A	radians

Spillway Invert Stage=	3.55	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	15.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	0.50	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth	$=$feet Stage at Top of Freeboard $=$ 4.38 feet	
Basin Area at Top of Freeboard	$=0.16$	acres
Basin Volume at Top of Freeboard	$=0.41$	acre-ft

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=\pi}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.84	1.12	1.37	1.75	2.08	2.43	3.35
CUHP Runoff Volume (acre-ft) =	0.072	0.254	0.126	0.172	0.219	0.299	0.388	0.497	0.782
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.126	0.172	0.219	0.299	0.388	0.497	0.782
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.0	0.0	0.1	0.8	1.8	4.2
गTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.00	0.01	0.02	0.20	0.45	1.06
Peak Inflow Q (cfs) =	N/A	N/A	1.6	2.2	2.8	4.1	5.6	7.4	11.7
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.1	0.5	1.8	3.8	9.0
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	5.9	3.1	6.2	2.3	2.1	2.1
Structure Controlling Flow $=$	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Dverflow Weir	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.1	0.3	0.6	1.1
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	37	58	47	53	57	60	58	56	51
Time to Drain 99\% of Inflow Volume (hours) =	40	64	51	57	62	67	66	64	62
Maximum Ponding Depth (ft) $=$	1.32	3.18	1.85	2.32	2.73	3.27	3.40	3.53	3.69
Area at Maximum Ponding Depth (acres) $=$	0.08	0.12	0.09	0.10	0.11	0.12	0.13	0.13	0.14
Maximum Volume Stored (acre-ft) =	0.073	0.254	0.115	0.159	0.202	0.265	0.280	0.297	0.319

ow Hydrographs
z user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	$\begin{gathered} \text { Stage } \\ \text { [ft] } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{aligned} & \hline \text { Area } \\ & \text { [acres] } \end{aligned}$	Volume [ft ${ }^{3}$]	Volume $\left[\begin{array}{ll} {[a-f t]} \end{array}\right.$	$\begin{aligned} & \text { Total } \\ & \text { Tutfow } \\ & \text { [cffs] } \end{aligned}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

*)

SNC•LAVALIN

Member of the SNC-Lavalin Group

72nd Avenue and Colorado Boulevard 90\% Drainage Report

City of Commerce City

23 July 2018

^TKINS

1. Introduction and Background

The Project, Colorado Boulevard and East 72 ${ }^{\text {nd }}$ Avenue Rail Line Station Area Improvement Project, has had significant changes to the scope of work and design approach since the 30\% submittals in March and April of 2017. These changes are the result of coordination with the City of Commerce City (City) and recommendations from Atkins. This report documents the changes and design approach for the 90% design submittal. The changes include:

- Full depth reconstruction of Colorado Boulevard
- 10 ' wide shared use trail in lieu of full construction of $72^{\text {nd }}$ Avenue, west of the Burlington Ditch
- Removal of the surface sand filter along Colorado Boulevard
- Replacing the existing 36-inch storm drain in Colorado Boulevard with a 48-inch pipe

2. General Location and Description

2.1. Location

The Project consist of roadway, drainage, and pedestrian connectivity to the new Regional Transportation District (RTD) station located on $72^{\text {nd }}$ Avenue, west of Colorado Boulevard. The improvements will be to Colorado Boulevard from 70 Avenue to north of $72^{\text {nd }}$ Avenue, along with a temporary trail along $72^{\text {nd }}$ Avenue from the Burlington Ditch to the North Metro Rail Line tracks. The project is approximately 0.28 miles in length within the City of Commerce City, which is located

Figure 2-1 - Vicinity Map within Adams County, Colorado. The project site begins in Range 67 West and ends on the border between Range 67 West and Range 68 West, the northern portion of the project is the border of Township 2 South and Township 3 South and extends south into Township 3 South, and the project crosses from the southwest corner of Section 31 to the northwest corner of Section 6.

2.2. Description of Improvements

The project will reconstruct and widen Colorado Boulevard between $70^{\text {th }}$ Avenue and $72^{\text {nd }}$ Avenue to accommodate new bike lanes and sidewalks. Minor improvements are proposed to the surface of the $72^{\text {nd }}$ Avenue bridge over Burlington Ditch. West of the bridge, a 10 -foot-wide trail will be constructed to provide pedestrian access to the new North Metro Rail Station. The total area for the improvements is approximately 2.4 acres.

3. Drainage Basins and Sub-Basins

3.1. Major Basin Description

This project is part of a watershed tributary to the South Platte River. There are currently no known Major Drainageway Plans or Outfall System Plans for this watershed. Adams County is in the process of preparing a Major Drainageway Plan, but it was not made available for this project.
The Burlington Ditch nearly parallels Colorado Boulevard approximately 50 to 250 feet to the west. Only this portion of Colorado Boulevard and the $72^{\text {nd }}$ Avenue drains directly to the canal.

3.2. Sub-Basin Description

$72^{\text {nd }}$ Avenue, west of the bridge over the Burlington Ditch, generally sheet flows northerly into and through the private Brannon property or to a ditch along the RTD tracks' maintenance access road at the west end of the project. The RTD property to the south generally routes all runoff overland westerly to storm sewer that is then routed to a detention pond to the south.
Colorado Boulevard generally slopes northerly from $70^{\text {th }}$ Avenue to $72^{\text {nd }}$ Avenue. A shallow roadside ditch along the west shoulder conveys runoff northerly to the Burlington Ditch near $72^{\text {nd }}$ Avenue. The east half of the road generally flows into the adjacent residential properties and continues northerly to a depression south of the Adams County Human Services Building. Approximately 27 acres of tributary area drains to the Adams County Human Services Building parking lot and is inadvertently detained. Flows from the parking lot drain to the existing storm drain in Colorado Boulevard. Figure 2-1 shows the existing drainage patterns.

Figure 3-1 - Existing Drainage Patterns
^TKINS

5.2.5.3. Tailwater Analysis

Once the City confirmed that the existing storm drain system in $70^{\text {th }}$ Avenue would be the outfall for the project, an appropriate tailwater elevation for the existing system needed to be determined.
Initially, the entire downstream system was modeled to the outfall at the South Platte River. This analysis showed that the existing 72-inch storm drain between the outfall and the RTD corridor would require the HGL to be well above the existing ground. Figure $5-3$ shows the profile for this model.

South Platte River Assumed Free Outfall

Figure 5-3 - 100-Year HGL, Assuming Free Outfall at South Platte River
Based on the results of this analysis, it was assumed that the system that the system would surcharge the manhole at the transition between the 48-inch pipe and 72 -inch pipe. The tailwater for this assumption was set to the rim of the manhole, 5109.74 feet. Figure $5-4$ shows the assumed HGL in the existing downstream pipe system.

Figure 5-4 - 100-Year HGL, Assuming Relief at Manhole

5.2.5.4. Water Quality

The original plan was to treat the Water Quality Capture Volume (WQCV) for Colorado Boulevard in a surface sand filter located southwest of the $72^{\text {nd }}$ Avenue and Colorado Blvd intersection. However, trying to drain the low point of the road to the basin was severely limiting the allowable storage volume of the sand filter. In addition, conveying runoff to the sand filter would require parallel storm drain alignments. As an alternative, Atkins' proposed using a hydrodynamic separator. This change was approved by the City in June 2018.

5.2.6. Analysis Scenarios

Three different analysis were considered: 5-Year proposed, 100-Year proposed, 100-Year future. The 5-Year and 100-Year scenarios include the project improvements only, and do not consider future improvements to the $70^{\text {th }}$ Avenue storm drain and the option for additional improvements along $72^{\text {nd }}$ Avenue.

The 100-Year future scenario includes recommendations from the Fairfax Park Outfall Improvements Hydrologic Analysis to upsizing the existing storm in $70^{\text {th }}$ Avenue and make modifications to the Fairfax Park detention basin.

The scenario also includes recommendations from Atkins to construct an additional storm drain system along $72^{\text {nd }}$ and a new detention pond at Alsup Elementary School. These improvements along $72^{\text {nd }}$
Avenue will provide attenuation that is crucial for the proposed 48-inch storm drain Colorado Boulevard to meet design criteria. The existing drainage basin contributing flow to Colorado from $72^{\text {nd }}$ is approximately 27 acres, generating roughly 85 cfs in the 100-year storm. Intercepting this entire flow at the intersection of $72^{\text {nd }}$ Avenue and Colorado Boulevard is impractical. Intercepting this flow would require a large bank of inlets and a much larger trunk line within Colorado Boulevard.

5.2.6.1. 5-Year Proposed

The 5-Year Proposed analysis was conducted to analyze the minor storm event upon completion of the project. The Fairfax Park Outfall Improvements Hydrologic Analysis includes 100-yearr flow rates for the existing, the interim, and final condition for the storm drain within $70^{\text {th }}$ Avenue. The system is currently in the "interim" condition. The 100-year peak flow directly upstream of the project tie in has been estimated at 126.7 cfs. The 5 -year flow rate was determined by scaling the 100-year flow by the ratio of rainfall intensities. This assumes that the runoff coefficients are the same in the 5-year and 100year. While the 5 -year runoff coefficient would be smaller than the 100-year, resulting in less runoff, this is a conservative assumption. The 5 -year flow rate injected upstream of the project was 70 cfs. Figure $5-3$ summarizes the proposed 5 -year analysis. Table $5-1$ summarizes the flow rates, depth of flow, and spread at each proposed inlet.

Table 5-1 - 5-Year Proposed Analysis Inlet Summary

Inlet ID	Flow Rate (cfs)	By-Passed (cfs)	Depth of Flow* (in)	Spread (ft)
A-CO-IN-1	1.2	0.0	4.5	18.7
A-CO-IN-2	35.4	29.1	7.6	25.4
B-CO-IN-1	4.7	2.0	4.7	13.5
B-CO-IN-2	3.1	0.9	4.3	11.5
C-CO-IN-1	5.6	2.7	5.3	15.7
C-CO-IN-2	3.4	1.1	4.6	12.7
D-CO-IN-1	6.1	1.7	3.7	32.0
D-CO-IN-2	29.6	15.9	8.7	16.9

*Governing Criteria is that the max depth in the gutter cannot exceed 6 -inches

5.2.6.2. 100-Year Proposed

The 100-Year proposed analysis was conducted to analyze the major storm event upon completion of the project. The 126.7 cfs determined by the Fairfax Park Outfall Improvements Hydrologic Analysis was injected directly upstream of the project location. The results of this analysis show that in the 100year event, the system will surcharge on to the street. Flows along Colorado will flow north and inundate the Adams County Parking Lot. This matches the existing condition. Figure 5-4 summarizes the proposed 100-year analysis. Table 5-2 summarizes the flow rates, depth of flow, and spread at each proposed inlet.

Table 5-2 - 100-Year Proposed Analysis Inlet Summary

Inlet ID	Flow Rate (cfs)	By-Passed (cfs)	Depth of Flow* (in)	Spread (ft)
A-CO-IN-1	20.7	0.0	7.0	29.0
A-CO-IN-2	85.5	76.6	10.1	35.6
B-CO-IN-1	13.8	9.5	6.5	18.0
B-CO-IN-2	9.1	5.5	5.9	18.0
C-CO-IN-1	13.5	9.2	6.9	18.0
C-CO-IN-2	7.9	4.5	5.8	18.0
D-CO-IN-1	17.5	10.6	4.9	32.0
D-CO-IN-2	77.6	56.3	12.1	24.4

*Governing Criteria is that the max depth in the gutter cannot exceed 12-inches

5.2.6.3. 100 -Year Future

The 100-Year future model incorporates conceptual recommendations from both the Fairfax Park Outtall Improvements Hydrologic Analysis and Atkins. The City has plans to redevelop the area around the new RTD station. As such, it is expected that the drainage system within the area will be improved in the coming years.
The 100-year future model was analyzed to document that the Project improvements, while not meeting all the design criteria due to limitations with the existing adjacent systems, will meet the design criteria once future improvements are made.
The future conditions analysis assumes that:

- The existing 72-inch pipe between the west side of the RTD corridor and the South Platte River will be upsized. Initial calculations indicate that it will need to be a 7 -foot $x 6$-foot box culvert.
- The 48 -inch pipe in $72^{\text {nd }}$ Avenue will be upsized to 72 -inch pipe, per the recommendation in the Fairfax Park Outfall Improvement Hydrologic Analysis.
- The 100 -year flow rate in the future 72 -inch pipe will be 317.83 cfs, per the Fairfax Park Outfall Improvement Hydrologic Analysis.
- A new storm drain system will be constructed along $72^{\text {nd }}$ Avenue, to the east of the project. This system includes:
- Trunk line along $72^{\text {nd }}$, between Colorado Boulevard and Cherry Street.
- Full spectrum detention pond at Alsup Elementary School. The basin would be in the north-east corner of the school. It would provide water quality, and 100-year detention. The peak 100-year flow rate from the pond would be 21 cfs. The conceptual design calls for a smaller, deeper portion of the pond to detain smaller, more frequent events. The 100-year event would be contained in higher portion of the basin. This section of the basin would be roughly the size of a soccer field, and depressed 3 feet from the surrounding area.
To accommodate the future work, the project will upsize, extend, and vertically realign the existing storm drain line in Colorado Boulevard. This work will provide a connection for the future improvements to the outfall pipe in $70^{\text {th }}$ Avenue.
Results from the 100-year future analysis shows major improvements to the new 48-inch pipe under Colorado Blvd (Line A), as well as reduction in peak flows being by-passed into the Adams County Parking Lot. This will result in a reduction of flooding within the parking lot. Figure $5-5$ summarizes the future 100-year analysis. Table 5-3 summarizes the flow rates, depth of flow, and spread at each proposed inlet, while table 5-4 summarizes compliance with the design criteria.
^TKINS

Table 5-3-100-Year Future Analysis Inlet Summary

Inlet ID	Flow Rate (cfs)	By-Passed (cfs)	Depth of Flow (in)	Spread (ft)
A-CO-IN-1	20.7	0.0	7.0	29.0
A-CO-IN-2	1.1	0.0	2.8	5.4
B-CO-IN-1	13.8	9.5	6.5	18.0
B-CO-IN-2	9.1	5.5	5.9	18.0
C-CO-IN-1	13.5	9.2	6.9	18.0
C-CO-IN-2	7.9	4.5	5.8	18.0
D-CO-IN-1	17.5	10.6	4.9	32.0
D-CO-IN-2	1.0	0.0	2.9	4.0

Table 5-4 - Design Criteria Compliance Summary

Criteria	5-Year Proposed	100-Year Proposed	100-Year Future
Spread	Fail	n / a	n / a
Depth	Fail	Fail	Pass
HGL	n / a	Fail	Pass
Pipe Capacity	Pass	n / a	n / a

Figure 5-5 - 5-Year Proposed Layout

Figure 5-6-100-Year Proposed Layout

Figure 5-7-100-Year Future Layout

Appendices

A. Hydrologic Computations

1. Existing Drainage Area Map
2. Proposed Drainage Area Map
3. Future Drainage Area Map
4. Minor and Major Storm Runoff Calculations
5. Excerpts from the City of Commerce City Storm Drainage Design and Technical Criteria Manual
B. Hydraulic Computations
6. InRoads Results
7. UD-Inlet Results
C. Reference Material
8. Flood Insurance Rate Map
9. NRCS Web Soils Survey
10. Fairfax Park Outfall Hydrologic Analysis

Appendix A. Hydrologic Computations

A.1. Existing Drainage Area Map

The existing drainage area maps show the existing drainage patterns for the Project Area. The patterns assume that the RTD North Metro Station is fully constructed and is an existing drainage feature.

A.2. Proposed Drainage Area Map

The proposed drainage area maps show the drainage patterns and tributary area once the Project has been constructed. They do not account for any future work.

A.3. Future Drainage Area Map

The future drainage area maps show the drainage patterns and tributary area used in the future conditions analysis. They are based upon the recommendations in the Fairfax Park Outfall Improvements Hydrologic Analysis as well as recommendations from Atkins.

A.4. Minor and Major Storm Runoff Calculations

Equations used:

$Q=\boldsymbol{C i} \boldsymbol{A}$
Where:
Q = Peak Flow Rate (cfs)
i = Rainfall Intensity (in/hr)
A = Runoff Area (ac)
$t_{i}=\frac{1.8\left(1.1-C_{5}\right) \sqrt{L}}{3 \sqrt{S}}$
Where:
$\mathrm{t}_{\mathrm{i}}=$ Initial Overland Flow Travel Time (min)
$\mathrm{C}_{5}=5$-Year runoff coefficient
L = Length of Overland Flow Path (ft)
S = Slope of Overland Flow Path (ft/ft)
$\boldsymbol{T}_{c \text { max }}=\frac{L}{\mathbf{1 8 0}}+\mathbf{1 0}$
Where:
$\mathrm{T}_{\mathrm{c} \text { max }}=$ Maximum Time of Concentration
$\mathrm{L}=$ Length of Basin Flow Path (ft)
City of Commerce City C Values

C3 Storm Drainage Design and Technical Criteria Manual Table 501					
Land Use	\% Impervious	$\mathbf{2 - Y r}$	$\mathbf{5 - Y r}$	$\mathbf{1 0 0}-\mathrm{YR}$	Land Use full
Res.	45%	0.40	0.45	0.60	Single Family
Paved	100%	0.87	0.88	0.93	Paved Streets
Walks	96%	0.87	0.87	0.89	Drives and Walks
Schools	50%	0.45	0.50	0.70	Schools

Rainfall Data
City of Commerce City Storm Drainage Design and Criteria
Manual Table 402
$\mathbf{T c}$ $\mathbf{2 - Y r}$ $\mathbf{5 - Y r}$ $\mathbf{1 0 - Y r}$ $\mathbf{5 0 - Y r}$ $\mathbf{1 0 0}-\mathbf{Y r}$ 5 3.36 4.80 5.40 7.80 9.00 10 2.58 3.72 4.20 6.06 6.96 15 2.16 3.12 3.52 5.12 5.88 30 1.50 2.16 2.44 3.54 4.08 60 0.95 1.37 1.55 2.24 2.58

[^2]| C3 Storm Draiange Design Criteria Manual Figure 501 |
| :--- |
| Slope Paved Gutter Bare Ground Short Grass
 0.0% 0.00 0.00 0.00 0.00
 0.5% 1.55 1.55 0.70 0.50
 1.0% 1.95 1.95 1.05 0.70
 2.0% 2.80 2.80 1.40 1.00
 3.0% 3.50 3.50 1.75 1.30
 5.0% 4.50 4.50 2.20 1,7
 10.0% 6.40 6.40 3.10 2.20
 20.0% 8.00 8.00 4.40 3.20
 30.0% 11.50 11.50 5.50 3.90
 50.0% 15.00 15.00 7.00 5.00 |

Member of the SNC-Lavalin Group

Condition	Proposed			Return	Period	$5-\mathrm{Yr}$																		
Area ID				$\frac{\frac{0}{\sqrt{n}}}{\substack{0}}$				$\frac{\stackrel{0}{N}}{\frac{0}{N}}$				$\begin{aligned} & \frac{0}{\sqrt{10}} \\ & 0 \end{aligned}$				$\frac{\stackrel{0}{N}}{\frac{0}{N}}$	$\begin{aligned} & \otimes \\ & \stackrel{\otimes}{3} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \stackrel{0}{<} \underset{\mathbb{O}}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{\bar{D}} \\ & \text { D } \\ & \underline{\underline{E}} \\ & \frac{0}{\circ} \end{aligned}$	$\begin{aligned} & \frac{0}{\sqrt{0}} \\ & \frac{0}{2} \end{aligned}$	Total Area (ac)	Weighted C	Weighted \% Impervious	Paved Area (ac)
A-A-CO-IN-1	Paved	0.2841	100\%	0.8800	Res.	0.0132	45\%	0.4500													0.2973	0.8610	97.6\%	0.2841
A-A-CO-IN-2	Paved	4.0933	100\%	0.8800	Res.	16.9064	45\%	0.4500	Schools	6.5044	50\%	0.5000									27.5040	0.5258	54.4\%	4.0933
A-B-CO-IN-1	Paved	0.1321	100\%	0.8800	Res.	0.6472	45\%	0.4500													0.7793	0.5229	54.3\%	0.1321
A-B-CO-IN-2	Paved	0.1749	100\%	0.8800	Res.	0.5872	45\%	0.4500													0.7621	0.5487	57.6\%	0.1749
A-C-CO-IN-1	Paved	0.2949	100\%	0.8800	Res.	2.0293	45\%	0.4500													2.3242	0.5046	52.0\%	0.2949
A-C-CO-IN-2	Paved	0.2301	100\%	0.8800	Res.	1.1169	45\%	0.4500													1.3471	0.5235	54.4\%	0.2301
A-D-CO-IN-1	Paved	0.5327	100\%	0.8800	Res.	1.4012	45\%	0.4500													1.9339	0.5684	60.1\%	0.5327
A-D-CO-IN-2	Paved	0.1196	100\%	0.8800																	0.1196	0.8800	100.0\%	0.1196
A-EX-71-IN-1	Paved	0.2149	100\%	0.8800	Res.	4.1617	45\%	0.4500													4.3766	0.4711	47.7\%	0.2149
A-EX-CO-IN-1	Paved	4.2909	100\%	0.8800	Res.	0.3157	45\%	0.4500													4.6066	0.8505	96.2\%	4.2909
A-CO-LOT	Res.	2.1111	45\%	0.4500																	2.1111	0.4500	45.0\%	0.0000
A-A-CO-IN-2 (Fut)	Paved	0.1373	100\%	0.8800																	0.1373	0.8800	100.0\%	0.1373

Member of the SNC-Lavalin Group

Condition	Proposed			Retu	Period	100-YR																		
Area ID				$\frac{\stackrel{0}{\frac{1}{n}}}{\substack{\sim}}$				$\begin{aligned} & \frac{0}{\sqrt{01}} \\ & 0 \end{aligned}$				$\frac{0}{\frac{0}{\pi}}$				$\frac{\frac{0}{\sqrt{1}}}{0}$	$\begin{aligned} & \stackrel{\otimes}{\stackrel{1}{2}} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$			$\frac{\stackrel{0}{5}}{\frac{0}{0}}$	Total Area (ac)	Weighted C	Weighted \% Impervious	Paved Area (ac)
A-A-CO-IN-1	Paved	0.2841	100\%	0.93	Res.	0.0132	45\%	0.60													0.2973	0.9154	0.9756	0.2841
A-A-CO-IN-2	Paved	4.0933	100\%	0.93	Res.	16.9064	45\%	0.60	Schools	6.5044	50\%	0.70									27.5040	0.6728	0.5437	4.0933
A-B-CO-IN-1	Paved	0.1321	100\%	0.93	Res.	0.6472	45\%	0.60													0.7793	0.6559	0.5432	0.1321
A-B-CO-IN-2	Paved	0.1749	100\%	0.93	Res.	0.5872	45\%	0.60													0.7621	0.6757	0.5762	0.1749
A-C-CO-IN-1	Paved	0.2949	100\%	0.93	Res.	2.0293	45\%	0.60													2.3242	0.6419	0.5198	0.2949
A-C-CO-IN-2	Paved	0.2301	100\%	0.93	Res.	1.1169	45\%	0.60													1.3471	0.6564	0.5440	0.2301
A-D-CO-IN-1	Paved	0.5327	100\%	0.93	Res.	1.4012	45\%	0.60													1.9339	0.6909	0.6015	0.5327
A-D-CO-IN-2	Paved	0.1196	100\%	0.93																	0.1196	0.9300	1.0000	0.1196
A-EX-71-IN-1	Paved	0.2149	100\%	0.93	Res.	4.1617	45\%	0.60													4.3766	0.6162	0.4770	0.2149
A-EX-CO-IN-1	Paved	4.2909	100\%	0.93	Res.	0.3157	45\%	0.60													4.6066	0.9074	0.9623	4.2909
A-CO-LOT	Res.	2.1111	45\%	0.60																	2.1111	0.6000	0.4500	0.0000
A-A-CO-IN-2 (Fut)	Paved	0.1373	100\%	0.93																	0.1373	0.9300	1.0000	0.1373

SNC•LAVALIN

Member of the SNC-Lavalin Group

Area ID	Discharge To	Total Area	Propsed C Values		Propsed Tc	Rainfall Intensity		Peak Flow Rate	
			$5-\mathrm{Yr}$	$100-\mathrm{Yr}$		$5-\mathrm{Yr}$	$100-\mathrm{Yr}$	$5-\mathrm{Yr}$	$100-\mathrm{Yr}$
		(ac)			(min)	(in/hr)	(in/hr)	(cfs)	(cfs)
A-A-CO-IN-1	A-CO-IN-1	0.30	0.86	0.92	5.00	4.80	9.00	1.23	2.45
A-A-CO-IN-2	A-CO-IN-2	27.50	0.53	0.67	25.51	2.45	4.62	35.40	85.47
A-B-CO-IN-1	B-CO-IN-1	0.78	0.52	0.66	5.00	4.80	9.00	1.96	4.60
A-B-CO-IN-2	B-CO-IN-2	0.76	0.55	0.68	5.00	4.80	9.00	2.01	4.63
A-C-CO-IN-1	C-CO-IN-1	2.32	0.50	0.64	5.00	4.80	9.00	5.63	13.43
A-C-CO-IN-2	C-CO-IN-3	1.35	0.52	0.66	5.00	4.80	9.00	3.38	7.96
A-D-CO-IN-1	D-CO-IN-1	1.93	0.57	0.69	5.00	4.80	9.00	5.28	12.03
A-D-CO-IN-2	D-CO-IN-2	0.12	0.88	0.93	5.00	4.80	9.00	0.51	1.00
A-EX-71-IN-1	EX-71-IN-1	4.38	0.47	0.62	5.00	4.80	9.00	9.90	24.27
A-EX-CO-IN-1	EX-CO-IN-1	4.61	0.85	0.91	5.00	4.80	9.00	18.81	37.62
A-CO-LOT	--	2.11	0.45	0.60	5.00	4.80	9.00	4.56	11.40
A-A-CO-IN-2 (Fut)	A-CO-IN-2 (Fut)	0.1373	0.88	0.93	5.00	4.80	9.00	0.58	1.15

 the future system

Appendix B. Hydraulic Computations

B.1. InRoads Results

ID	HGL	Inv. In		Inv. Out		Rim El.	Total Flow	Time to Structure
	(ft)		(ft)		(ft)	(ft)	(cfs)	(min)
A-CO-MH-1	5120.76	(N)	5116.29	(S)	5116.09	5131.49	32.62	27.87
		(E)	5119.68					
		(W)	5122.11					
A-CO-MH-2	5120.91	(N)	5118.00	(S)	5117.80	5130.36	26.03	27.11
A-CO-MH-3	5119.99	(N)	5118.81	(S)	5118.61	5129.42	26.13	26.79
		(E)	5123.25					
A-CO-MH-4	5120.38	(NE)	5119.51	(S)	5119.31	5128.55	18.89	26.50
		(E)	5121.63					
A-CO-MH-5	5120.81	(NE)	5120.33	(SW)	5120.13	5127.59	6.53	26.02
		(NW)	5123.56					
A-CO-MH-6	5123.12	(NE)	5121.07	(SW)	5120.87	5128.48	5.98	25.59
		(E)	5121.87					
B-CO-HS-1	5123.92	(N)	5122.35	(E)	5122.15	5131.96	10.27	5.56
		(S)	5122.35					
B-CO-MH-1	5125.01	(N)	5124.30	(S)	5123.78	5131.41	4.81	5.21
		(E)	5123.98					
C-CO-BEND-1	5124.55	(SE)	5122.70	(N)	5122.50	5132.10	5.63	5.21
EX-70-MH-1	5117.80	(NE)	5115.80	(W)	5115.80	5131.73	70.00	0.00
EX-70-MH-2	5117.69	(N)	5113.44	(W)	5113.33	5133.87	101.49	29.11
		(E)	5113.33					
EX-70-MH-3	5112.48	(E)	5108.12	(NW)	5107.98	5126.46	101.05	29.60
EX-70-MH-4	5110.49	(SE)	5104.14	(W)	5104.11	5127.31	100.92	29.75
EX-CO-MH-1	0.00	(N)	5118.23	(S)	5117.97	5132.17	0.00	0.00
EX-CO-MH-3	0.00		0.00	(S)	5122.81	5129.69	0.00	0.00
FUT-MH-1	5126.54	(N)	5125.86	(SW)	5121.26	5128.93	0.10	0.00

^TKINS
72nd Avenue \& Colorado Blvd
InRoads Report
5-Yr Pipes

SNC•LAVALIN

Member of the SNC-Lavalin Group

ID	Shape	Width	Height	Material	Inv. In	Inv. Out	Pipe length	Slope	Depth of Flow	HGL In	HGL Out	Capacity	Total Flow	Velocity
		(in)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft/sec)
A-CO-P-1	Circular	48	48	RCP	5116.09	5113.44	530.31	0.50	4.00	5120.75	5117.69	101.57	32.62	2.60
A-CO-P-2	Circular	48	48	RCP	5117.80	5116.29	302.53	0.50	4.00	5120.90	5120.76	101.57	25.91	2.06
A-CO-P-3	Circular	48	48	RCP	5118.61	5118.00	122.47	0.50	1.38	5119.99	5120.91	101.57	26.13	6.77
A-CO-P-4	Circular	48	48	RCP	5119.31	5118.81	99.57	0.50	1.07	5120.38	5119.99	101.57	15.98	5.89
A-CO-P-5	Circular	48	48	RCP	5120.13	5119.51	124.10	0.50	0.69	5120.81	5120.38	101.57	6.53	4.54
A-CO-P-6	Circular	48	48	RCP	5120.87	5120.33	108.40	0.50	0.66	5121.53	5120.99	101.57	5.98	4.42
A-CO-P-7	Circular	18	18	RCP	5124.82	5121.87	49.49	5.97	0.49	5125.31	5122.36	25.66	5.89	11.78
A-CO-P-8	Circular	18	18	RCP	5123.65	5123.56	9.50	1.00	0.35	5124.00	5123.90	10.50	1.23	3.98
B-CO-P-1	Circular	18	18	RCP	5122.15	5122.11	7.02	0.50	1.50	5123.74	5123.61	7.43	10.27	5.81
B-CO-P-2	Circular	18	18	RCP	5123.78	5122.35	123.06	1.16	1.50	5124.60	5123.92	11.32	4.81	2.72
B-CO-P-3	Circular	18	18	RCP	5124.41	5124.30	22.62	0.50	0.62	5125.38	5125.36	7.43	2.65	3.85
B-CO-P-4	Circular	18	18	RCP	5124.20	5123.98	43.25	0.50	0.56	5125.23	5125.01	7.43	2.21	3.67
C-CO-P-1	Circular	18	18	RCP	5122.50	5122.35	30.69	0.50	1.50	5124.42	5123.95	7.43	5.63	3.18
C-CO-P-2	Circular	18	18	RCP	5122.72	5122.70	4.57	0.50	1.50	5124.57	5124.55	7.43	5.63	3.19
C-CO-P-3	Circular	18	18	RCP	5123.10	5122.92	37.00	0.50	1.50	5124.82	5124.67	7.43	2.44	1.38
D-CO-P-1	Circular	24	24	RCP	5122.24	5121.63	43.83	1.40	1.24	5123.48	5122.87	26.77	18.89	9.23
D-CO-P-2	Circular	24	24	RCP	5123.00	5122.44	111.39	0.50	2.00	5125.83	5124.35	16.00	13.78	4.39
EX-70-P-1	Circular	72	72	RCP	5115.80	5113.33	518.92	0.48	2.00	5117.80	5117.69	292.19	70.00	8.49
EX-70-P-2	Circular	72	72	RCP	5113.33	5108.12	391.37	1.33	1.86	5117.69	5112.48	488.49	101.49	13.63
EX-70-P-3	Circular	72	72	RCP	5107.98	5104.14	149.82	2.57	6.00	5110.57	5110.49	678.78	101.05	3.57
EX-71-P-1	Circular	15	15	RCP	5125.86	5119.68	435.60	1.42	0.70	5126.56	5120.76	7.69	4.62	6.55
EX-CO-P-3	Circular	24	24	RCP	5123.95	5123.25	61.75	1.13	1.44	5125.39	5124.69	24.05	20.85	8.62
FUT-P-1	Circular	48	48	RCP	5121.26	5121.07	38.33	0.50	0.10	5123.34	5123.12	101.57	0.10	1.28
P1	Circular	72	72	RCP	5116.02	5115.80	22.38	1.00	1.65	5117.67	5117.80	423.51	70.00	11.08
P2	Circular	15	15	RCP	5125.93	5125.86	14.24	0.50	0.13	5126.63	5126.54	4.57	0.10	1.51
P3	Circular	72	72	RCP	5104.11	5103.47	226.91	0.28	6.00	5110.39	5109.74	100.83	100.92	3.57

Min Velocity $=3 \mathrm{ft} / \mathrm{sec}$.

Capacity>5 Yr Flow

Pipes A-CO-P-1, A-CO-P-2 are sized to convey the 100 yr flows. Decreasing the pipe size or increasing the slope would go against the original intention of being able to convey flows from a future storm drain system in 72nd Ave.
The slope on pipes B-CO-P-3, C-CO-P-3 is controled by the downstream hydrodynamic separator, and cannot be lowered. U/S is constrained by min cover. Pipe is already as small as it can be.
Fut-P-1 and P1, P2, P3 are existing or dummy pipes used to model the tailwater.
Pipes B-CO-P-1 can be upsized b/c it needs to match the other pipes connecting to the hydrodyamic separator. P3 is an existing pipe.

ID	HGL	Inv. In		Inv. Out		Rim El.	Total Flow	Time to Structure
	(ft)		(ft)		(ft)	(ft)	(cfs)	(min)
A-CO-MH-1	5131.77	(N)	5116.29	(S)	5116.09	5131.49	58.32	27.59
		(E)	5119.68					
		(W)	5122.11					
A-CO-MH-2	5130.85	(N)	5118.00	(S)	5117.80	5130.36	48.60	26.95
A-CO-MH-3	5131.13	(N)	5118.81	(S)	5118.61	5129.42	51.59	26.68
		(E)	5123.25					
A-CO-MH-4	5131.36	(NE)	5119.51	(S)	5119.31	5128.55	28.15	26.41
		(E)	5121.63					
A-CO-MH-5	5131.41	(NE)	5120.33	(SW)	5120.13	5127.59	8.98	25.98
		(NW)	5123.56					
A-CO-MH-6	5131.42	(NE)	5121.07	(SW)	5120.87	5128.48	7.90	25.58
		(E)	5121.87					
B-CO-HS-1	5132.36	(N)	5122.35	(E)	5122.15	5131.96	14.81	5.51
		(S)	5122.35					
B-CO-MH-1	5133.97	(N)	5124.30	(S)	5123.78	5131.41	7.28	5.19
		(E)	5123.98					
C-CO-BEND-1	5133.82	(SE)	5122.70	(N)	5122.50	5132.10	7.76	5.19
EX-70-MH-1	5132.63	(NE)	5115.80	(W)	5115.80	5131.73	317.83	0.00
EX-70-MH-2	5126.97	(N)	5113.44	(W)	5113.33	5133.87	374.44	28.66
		(E)	5113.33					
EX-70-MH-3	5123.50	(E)	5108.12	(NW)	5107.98	5126.46	373.88	29.01
EX-70-MH-4	5120.85	(SE)	5104.14	(W)	5104.11	5127.31	373.71	29.12
EX-CO-MH-1	0.00	(N)	5118.23	(S)	5117.97	5132.17	0.00	0.00
EX-CO-MH-3	0.00		0.00	(S)	5122.81	5129.69	0.00	0.00
FUT-MH-1	5131.43	(N)	5125.86	(SW)	5121.26	5128.93	0.10	0.00

HGLs are known to surcharge the 100-yr proposed condition. Existing and proposed overland flow patterns are similar.
^TKINS
Member of the SNC-Lavalin Group
72nd Avenue \& Colorado Blvd

InRoads Report

100-Yr Pipes (Proposed)

ID	Shape	Width	Height	Material	Inv. In	Inv. Out	Pipe length	Slope	Depth of Flow	HGL In	HGL Out	Capacity	Total Flow	Velocity
		(in)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft/sec)
A-CO-P-1	Circular	48	48	RCP	5116.09	5113.44	530.31	0.50	4.00	5130.25	5126.97	101.57	58.32	4.64
A-CO-P-2	Circular	48	48	RCP	5117.80	5116.29	302.53	0.50	4.00	5130.77	5130.31	101.57	48.36	3.85
A-CO-P-3	Circular	48	48	RCP	5118.61	5118.00	122.47	0.50	4.00	5131.00	5130.85	101.57	48.70	3.88
A-CO-P-4	Circular	48	48	RCP	5119.31	5118.81	99.57	0.50	4.00	5131.34	5131.13	101.57	23.20	1.85
A-CO-P-5	Circular	48	48	RCP	5120.13	5119.51	124.10	0.50	4.00	5131.41	5131.36	101.57	8.98	0.71
A-CO-P-6	Circular	48	48	RCP	5120.87	5120.33	108.40	0.50	4.00	5131.42	5131.41	101.57	7.90	0.63
A-CO-P-7	Circular	18	18	RCP	5124.82	5121.87	49.49	5.97	1.50	5131.43	5131.43	25.66	7.81	4.42
A-CO-P-8	Circular	18	18	RCP	5123.65	5123.56	9.50	1.00	1.50	5131.40	5131.41	10.50	2.30	1.30
B-CO-P-1	Circular	18	18	RCP	5122.15	5122.11	7.02	0.50	1.50	5131.61	5132.11	7.43	14.81	8.38
B-CO-P-2	Circular	18	18	RCP	5123.78	5122.35	123.06	1.16	1.50	5133.81	5132.36	11.32	7.28	4.12
B-CO-P-3	Circular	18	18	RCP	5124.41	5124.30	22.62	0.50	1.50	5134.26	5134.03	7.43	3.95	2.23
B-CO-P-4	Circular	18	18	RCP	5124.20	5123.98	43.25	0.50	1.50	5134.23	5133.97	7.43	3.39	1.92
C-CO-P-1	Circular	18	18	RCP	5122.50	5122.35	30.69	0.50	1.50	5133.40	5132.41	7.43	7.75	4.38
C-CO-P-2	Circular	18	18	RCP	5122.72	5122.70	4.57	0.50	1.50	5133.86	5133.82	7.43	7.76	4.39
C-CO-P-3	Circular	18	18	RCP	5123.10	5122.92	37.00	0.50	1.50	5134.47	5134.18	7.43	3.41	1.93
D-CO-P-1	Circular	24	24	RCP	5122.24	5121.63	43.84	1.40	2.00	5124.29	5123.54	26.77	28.15	8.96
D-CO-P-2	Circular	24	24	RCP	5123.00	5122.44	111.30	0.50	2.00	5126.96	5125.40	16.00	19.76	6.29
EX-70-P-1	Circular	72	72	RCP	5115.80	5113.33	518.92	0.48	6.00	5130.77	5127.05	292.19	317.83	11.24
EX-70-P-2	Circular	72	72	RCP	5113.33	5108.12	391.37	1.33	6.00	5126.60	5123.50	488.49	374.44	13.24
EX-70-P-3	Circular	72	72	RCP	5107.98	5104.14	149.82	2.57	6.00	5122.06	5120.85	678.78	373.88	13.22
EX-71-P-1	Circular	15	15	RCP	5125.86	5119.68	435.60	1.42	1.25	5136.90	5131.77	7.69	7.10	5.78
EX-CO-P-3	Circular	36	36	RCP	5123.95	5123.25	61.75	1.13	3.00	5126.32	5125.92	70.90	51.59	7.30
FUT-P-1	Circular	48	48	RCP	5121.26	5121.07	38.33	0.50	4.00	5131.43	5131.42	101.57	0.10	0.01
P1	Circular	72	72	RCP	5116.02	5115.80	22.38	1.00	6.00	5132.78	5132.63	423.51	317.83	11.24
P2	Circular	15	15	RCP	5125.93	5125.86	14.24	0.50	1.25	5131.43	5131.43	4.57	0.10	0.08
P3	Circular	72	72	RCP	5104.11	5103.47	226.91	0.28	6.00	5118.65	5109.74	100.83	373.71	13.22

HGLs are known to surcharge the 100-yr proposed condition. Existing and proposed overland flow patterns are similar.

72nd Avenue \& Colorado Blvd

^TKINS
Member of the SNC-Lavalin Group

ID	HGL	Inv. In		Inv. Out		Rim El.	Total Flow	Time to Structure
	(ft)		(ft)		(ft)	(ft)	(cfs)	(min)
A-CO-MH-1	5121.59	(N)	5116.29	(S)	5116.09	5131.49	110.79	9.23
		(E)	5119.68					
		(W)	5122.11					
A-CO-MH-2	5123.54	(N)	5118.00	(S)	5117.80	5130.36	95.06	8.67
A-CO-MH-3	5124.88	(N)	5118.81	(S)	5118.61	5129.42	95.99	8.44
		(E)	5123.25					
A-CO-MH-4	5124.97	(NE)	5119.51	(S)	5119.31	5128.55	86.42	8.24
		(E)	5121.63					
A-CO-MH-5	5125.60	(NE)	5120.33	(SW)	5120.13	5127.59	78.24	8.00
		(NW)	5123.56					
A-CO-MH-6	5126.05	(NE)	5121.07	(SW)	5120.87	5128.48	76.87	7.78
		(E)	5121.87					
B-CO-HS-1	5124.28	(N)	5122.35	(E)	5122.15	5131.96	14.81	5.51
		(S)	5122.35					
B-CO-MH-1	5125.82	(N)	5124.30	(S)	5123.78	5131.41	7.28	5.19
		(E)	5123.98					
C-CO-BEND-1	5125.60	(SE)	5122.70	(N)	5122.50	5132.10	7.76	5.19
EX-70-MH-1	5123.41	(NE)	5115.80	(W)	5115.80	5131.73	317.83	0.00
EX-70-MH-2	5118.34	(N)	5113.44	(W)	5113.33	5133.87	424.09	10.24
		(E)	5113.33					
EX-70-MH-3	5111.42	(E)	5108.12	(NW)	5107.98	5126.46	423.18	10.58
EX-70-MH-4	5111.07	(SE)	5104.14	(W)	5104.11	5127.31	422.91	10.69
FUT-MH-1	5126.67	(E)	5121.46	(SW)	5121.26	5128.93	75.78	7.70
FUT-MH-2	5126.94	(N)	5126.70	(W)	5121.88	5129.00	76.27	7.53
		(E)	5122.08					
		(S)	5125.76					

^TKINS
Member of the SNC-Lavalin Group
72nd Avenue \& Colorado Blvd
InRoads Report
100-Yr Pipes (Future)

ID	Shape	Width	Height	Material	Inv. In	Inv. Out	Pipe length	Slope	Depth of Flow	HGL In	HGL Out	Capacity	Total Flow	Velocity
		(in)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft/sec)
A-CO-P-1	Circular	48	48	RCP	5116.09	5113.44	530.31	0.50	4.00	5121.53	5118.34	101.57	110.79	8.82
A-CO-P-2	Circular	48	48	RCP	5117.80	5116.29	302.53	0.50	4.00	5123.34	5121.67	101.57	95.06	7.56
A-CO-P-3	Circular	48	48	RCP	5118.61	5118.00	122.47	0.50	4.00	5124.10	5123.54	101.57	95.99	7.64
A-CO-P-4	Circular	48	48	RCP	5119.31	5118.81	99.57	0.50	4.00	5124.90	5124.35	101.57	86.42	6.88
A-CO-P-5	Circular	48	48	RCP	5120.13	5119.51	124.10	0.50	4.00	5125.58	5125.06	101.57	78.24	6.23
A-CO-P-6	Circular	48	48	RCP	5120.87	5120.33	108.40	0.50	4.00	5126.02	5125.67	101.57	76.87	6.12
A-CO-P-7	Circular	18	18	RCP	5124.82	5121.87	49.49	5.97	1.50	5126.63	5126.05	25.66	1.52	0.86
A-CO-P-8	Circular	18	18	RCP	5123.65	5123.56	9.50	1.00	1.50	5126.18	5125.60	10.50	2.30	1.30
B-CO-P-1	Circular	18	18	RCP	5122.15	5122.11	7.02	0.50	1.50	5123.87	5123.61	7.43	14.81	8.38
B-CO-P-2	Circular	18	18	RCP	5123.78	5122.35	123.06	1.16	1.50	5125.73	5124.28	11.32	7.28	4.12
B-CO-P-3	Circular	18	18	RCP	5124.41	5124.30	22.62	0.50	1.50	5126.08	5125.86	7.43	3.95	2.23
B-CO-P-4	Circular	18	18	RCP	5124.20	5123.98	43.25	0.50	1.50	5126.08	5125.82	7.43	3.39	1.92
C-CO-P-1	Circular	18	18	RCP	5122.50	5122.35	30.69	0.50	1.50	5125.30	5124.31	7.43	7.75	4.38
C-CO-P-2	Circular	18	18	RCP	5122.72	5122.70	4.57	0.50	1.50	5125.65	5125.60	7.43	7.76	4.39
C-CO-P-3	Circular	18	18	RCP	5123.10	5122.92	37.00	0.50	1.50	5126.17	5125.88	7.43	3.41	1.93
D-CO-P-1	Circular	24	24	RCP	5122.24	5121.63	43.84	1.40	2.00	5125.64	5124.97	26.77	10.14	3.23
D-CO-P-2	Circular	24	24	RCP	5123.00	5122.44	111.30	0.50	2.00	5125.99	5125.83	16.00	1.51	0.48
EX-70-P-1	Circular	72	72	RCP	5115.80	5113.33	518.92	0.48	6.00	5122.29	5119.33	292.19	317.83	11.24
EX-70-P-2	Circular	72	72	RCP	5113.33	5108.12	391.37	1.33	4.32	5117.65	5112.44	488.49	424.09	19.46
EX-70-P-3	Circular	72	72	RCP	5107.98	5104.14	149.82	2.57	3.43	5111.42	5111.07	678.78	423.18	25.32
EX-71-P-1	Circular	15	15	RCP	5125.86	5119.68	435.60	1.42	1.25	5127.59	5121.59	7.69	7.10	5.78
EX-CO-P-3	Circular	24	24	RCP	5123.95	5123.25	61.75	1.13	1.01	5125.58	5124.88	24.05	12.14	7.67
FUT-P-1	Circular	48	48	RCP	5121.26	5121.07	38.33	0.50	4.00	5126.24	5126.10	101.57	75.78	6.03
FUT-P-2	Circular	48	48	RCP	5121.88	5121.46	84.80	0.49	4.00	5126.92	5126.67	100.50	76.27	6.07
FUT-P-3	Circular	42	42	RCP	5123.70	5122.08	463.67	0.35	3.50	5127.71	5127.01	59.41	21.00	2.18
FUT-P-4	Circular	18	18	RCP	5125.85	5125.76	18.76	0.46	0.77	5127.36	5126.94	7.09	3.73	4.06
FUT-P-5	Circular	18	18	RCP	5126.94	5126.70	47.61	0.49	1.50	5141.00	5128.20	7.38	52.04	29.45
P1	Circular	72	72	RCP	5116.02	5115.80	22.38	1.00	6.00	5123.56	5123.41	423.51	317.83	11.24
P3	Box	84	72	RCB	5104.11	5103.47	226.91	0.28	6.00	5110.30	5109.36	351.02	422.91	10.07

Analysis for future pipes, and upsizing of the existing outfall (P1 \& P3) to be completed by a future designer. Values used in the Future Conditions Model are conceptual.

Mark Winnen, Project Manager, Commerce City - PW

Mark Winnen, Project Manager, Commerce City - PW

Kimley»Horn

March 28, 2022
City of Commerce City
Attn: Lee Alverson, P.E. Development Review and Coordination Engineer
Public Works Department
8602 Rosemary Street
Commerce City, CO 80022

RE: 7001 Colorado Boulevard
 Preliminary Drainage Letter

The following letter is intended to serve as a preliminary drainage letter for the multi-family development at 7001 Colorado Boulevard, "The Project," which is located Northwest of the intersection of East 70 th Avenue and Colorado Boulevard, and is bounded on the west side by the O'Brien Canal, an irrigation ditch managed by Farmer's Reservoir and Irrigation Company (FRICO). This area was accounted for in the $72^{\text {nd }}$ Avenue and Colorado Boulevard 90\% Drainage Report, prepared by Atkins on July 23, 2018 (the Overall Drainage Report). As such, the project described herein is subject to meeting the criteria and expected design flows as stated within the aforementioned drainage report.

PROJECT DESCRIPTION

The Project consists of the addition of a new multi-family development, and associated widening for a left turn lane to enter the site from the northbound direction on Colorado Blvd. The onsite development will occur on a parcel of land consisting of 3.99 acres. The onsite area will be treated in a proposed water quality and detention pond to the north of the parcel.

The site is currently an unplatted parcel with 3 buildings, gravel parking areas, and limited vegetation. The area is subdivided into 4 different basins per the Overall Drainage Report. These basins are named Basin A-A-CO-IN-1, Basin A-B-CO-IN-1, Basin A-C-CO-IN-1, and Basin A-D-CO-IN-1. These basins total to 5.33 acres with a \% imperviousness of 58%. The site does not have any existing stormwater infrastructure onsite and appears to drain via overland sheet flow towards the south, north or west sides of the site. The drainage map from the Overall Drainage Report indicates that our site falls within tributary area to the Colorado Blvd system.

DESIGN CRITERIA AND APPROACH

The project is designed in accordance with "City of Commerce City Storm Drainage Design and Technical Criteria Manual," revised December 2021 (the "Criteria") and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 (the "Manual"). The project is subject to the design criteria as stated in the Overall Drainage Report). A proposed Water Quality and Detention pond is proposed on the north side of the site. It has been designed per the Criteria and Manual above. Rational Calculations and a MHFD detention spreadsheet calculation are provided as an attachment to this memo.

Kimley»Horn

PROPOSED DRAINAGE CONDITIONS

The development of the Project will include the addition of a left turn lane on Colorado Blvd, five new multi-story apartment buildings and covered parking areas (1.24 acres), surface parking and sidewalks (1.10 acres), and landscaping (1.65 acres) for a site imperviousness of 54%. The runoff coefficients have been calculated as 0.51 and 0.69 for the 5 -year and 100 -year events, respectively. The site will drain through proposed storm infrastructure from South to North. Existing drainage patterns will shift slightly, to drain to the proposed detention pond. The ultimate pond outfall will drain into the existing storm infrastructure within Colorado Blvd per the Overall Drainage Report. Stormwater runoff will generally be conveyed to curb inlets, or valley inlets. There will be a new driveway cut for the site access, as well as two emergency access points. The areas behind the ROW (within the Property) will drain to onsite storm infrastructure, to the extent practical.

The pond emergency overflow will be designed to overflow into the O'Brien Canal to the west. This will only occur in the event of a storm event above the 100 -year recurrence.

CONCLUSIONS

In conclusion, the proposed improvements with this Project are in substantial conformance with the $72^{\text {nd }}$ Avenue and Colorado Boulevard 90% Drainage Report (July 23, 2018) and are in compliance with City of Commerce City requirements.

KIMLEY-HORN AND ASSOCIATES, INC.

By: Randall J. Phelps, P.E.
 Project Manager

References:

- $\quad 72^{\text {nd }}$ Avenue and Colorado Boulevard 90\% Drainage Report (July 23, 2018)

Attachments:

- FEMA FIRMette Map
- NRCS Web Soil Survey
- Proposed Drainage Plan
- Hydrology Calculations
- Pond Detention Calculation
- Excerpts from 72 ${ }^{\text {nd }}$ Avenue and Colorado Boulevard 90\% Drainage Report
- Excerpts from As-Built E 72 ${ }^{\text {nd }}$ Ave and CO Blvd (21142)

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD HAZARD AREAS	Without Base Flood Elevation (BFE) Zone A,, , A99 With BFE or Depth Zone AE, AO, AH, VE, AR
Regulatory Floodway	

| | Digital Data Available |
| :--- | :--- | :--- |
| $\square: 3$ | No Digital Data Available |
| \square | Unmapped |

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/4/2021 at 10:11 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot ite used for regulatory purposes.

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for
Adams County Area, Parts of Adams and Denver Counties, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 12
Map Unit Descriptions. 12
Adams County Area, Parts of Adams and Denver Counties, Colorado 14
MISLD-Gravel pits 14
Tc-Terrace escarpments 14
VoA-Vona sandy loam, 0 to 1 percent slopes 15
Soil Information for All Uses 17
Soil Properties and Qualities 17
Soil Qualities and Features. 17
Hydrologic Soil Group 17
References 23

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.
Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest（AOI）		\％	Spoil Area
Area of Interest（AOI）		6	Stony Spot
Soils	Soil Map Unit Polygons	0	Very Stony Spot
		4	Very Stony Spot
\cdots	Soil Map Unit Lines	3	Wet Spot
		Δ	Other
\square	Soil Map Unit Points		
		＊＊	Special Line Features
Special Point Features			
（0）	Blowout	Water Features	
8	Borrow Pit	\sim	Streams and Canals
		Transportation	
燩	Clay Spot		
		＋＋	Rails
\bigcirc	Closed Depression	\sim	Interstate Highways
S0	Gravel Pit	－	US Routes
$\stackrel{\sim}{*}$	Gravelly Spot	\approx	Major Roads
（3）	Landfill	2	Local Roads
A	Lava Flow	Background	
当	Marsh or swamp		Aerial Photography
犮	Mine or Quarry		
（0）	Miscellaneous Water		
O	Perennial Water		
$*$	Rock Outcrop		
1	Saline Spot		
$\therefore{ }^{\circ}$	Sandy Spot		
을	Severely Eroded Spot		
©	Sinkhole		
3	Slide or Slip		
8	Sodic Spot		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1：20，000．

Warning：Soil Map may not be valid at this scale．

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement．The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale．

Please rely on the bar scale on each map sheet for map measurements．

Source of Map：Natural Resources Conservation Service Web Soil Survey URL：
Coordinate System：Web Mercator（EPSG：3857）

Maps from the Web Soil Survey are based on the Web Mercator projection，which preserves direction and shape but distorts distance and area．A projection that preserves area，such as the Albers equal－area conic projection，should be used if more accurate calculations of distance or area are required．

This product is generated from the USDA－NRCS certified data as of the version date（s）listed below．

Soil Survey Area：Adams County Area，Parts of Adams and Denver Counties，Colorado
Survey Area Data：Version 18，Aug 31， 2021

Soil map units are labeled（as space allows）for map scales 1：50，000 or larger．

Date（s）aerial images were photographed：Oct 20，2018－Oct 26， 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
MISLD	Gravel pits	0.7	Percent of AOI
Tc	Terrace escarpments	3.4	12.2%
VoA	Vona sandy loam, 0 to 1 percent slopes	1.4	62.8%
Totals for Area of Interest		$\mathbf{5 . 5}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Adams County Area, Parts of Adams and Denver Counties, Colorado
 MISLD-Gravel pits

Map Unit Setting

National map unit symbol: 34w6
Mean annual precipitation: 12 to 14 inches
Farmland classification: Not prime farmland

Map Unit Composition

Gravel pits: 100 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gravel Pits

Typical profile
H1-0 to 6 inches: extremely gravelly sand
H2-6 to 60 inches: extremely gravelly sand
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8s
Hydrologic Soil Group: A
Hydric soil rating: No

Tc-Terrace escarpments

Map Unit Setting

National map unit symbol: 34ws
Elevation: 4,400 to 5,500 feet
Mean annual precipitation: 12 to 14 inches
Mean annual air temperature: 46 to 54 degrees F
Frost-free period: 120 to 160 days
Farmland classification: Not prime farmland

Map Unit Composition

Terrace escarpments: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Terrace Escarpments

Setting

Landform: Terraces
Landform position (three-dimensional): Riser
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from mixed

Typical profile

H1-0 to 3 inches: gravelly sand

H2-3 to 60 inches: gravelly sand

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Ecological site: R067BY063CO - Gravel Breaks
Hydric soil rating: No

Minor Components

Dacono

Percent of map unit: 5 percent
Hydric soil rating: No

Vona

Percent of map unit: 5 percent
Hydric soil rating: No

VoA—Vona sandy loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 34x9
Elevation: 4,000 to 5,600 feet
Mean annual precipitation: 13 to 15 inches
Mean annual air temperature: 48 to 52 degrees F
Frost-free period: 125 to 155 days
Farmland classification: Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60

Map Unit Composition

Vona and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vona

Setting

Landform: Plains
Landform position (three-dimensional): Talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian sands

Typical profile

H1-0 to 9 inches: sandy loam
H2-9 to 22 inches: sandy loam
H3-22 to 60 inches: loamy sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches

Custom Soil Resource Report

Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Gypsum, maximum content: 2 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to $4.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: Moderate (about 6.3 inches)

Interpretive groups

Land capability classification (irrigated): 2s
Land capability classification (nonirrigated): 4c
Hydrologic Soil Group: A
Ecological site: R067BY024CO - Sandy Plains
Hydric soil rating: No

Minor Components

Dacono

Percent of map unit: 5 percent
Hydric soil rating: No

Truckton

Percent of map unit: 5 percent
Hydric soil rating: No

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

Area of Interest (AOI)	- c
Area of Interest (AOI)	$\square \mathrm{C} / \mathrm{D}$
Soils	
Soil Rating Polygons	\square
$\square \mathrm{A}$	- Not rated or not available
A/D	Water Features
\square B	Streams and Canals
	Transportation
B/D	H- Rails
$\square \mathrm{C}$	~ Interstate Highways
$\square \mathrm{C} / \mathrm{D}$	- US Routes
D	$\approx \quad$ Major Roads
Not rated or not available	~ Local Roads
Soil Rating Lines	Background
\cdots A	Aerial Photography
$\cdots \mathrm{A} / \mathrm{D}$	
\cdots	
, B/D	
$\cdots \mathrm{C}$	
$\cdots \mathrm{C} / \mathrm{D}$	
\cdots D	
* Not rated or not available	
Soil Rating Points	
- A	
- A / D	
- B	
- B/D	

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Adams County Area, Parts of Adams and Denver Counties, Colorado
Survey Area Data: Version 18, Aug 31, 2021

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 20, 2018—Oct 26, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
MISLD	Gravel pits	A	0.7	12.2\%
Tc	Terrace escarpments	A	3.4	62.8\%
VoA	Vona sandy loam, 0 to 1 percent slopes	A	1.4	25.1\%
Totals for Area of Interest			5.5	100.0\%

Rating Options-Hydrologic Soil Group

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Kimley»Horn
 STANDARD FORM SF-1

RUNOFF COEFFICIENTS - IMPERVIOUS CALCULATION

PROJECT NAME: 7001 Colorado Blvd
PROJECT NUMBER: 96216004
CALCULATED BY: JMD
CHECKED BY:
SOIL: Hydrologic Group A (NRCS Soil Survey)

Kim\|ey >) Horn $\begin{array}{r}\text { STANDARD FORM SF-2 } \\ \text { Time of Concentration }\end{array}$																
PROJECT NAME: 7001 Colorado Blvd DATE: 3/18/2022 PROJECT NUMBER: 96216004 CALCULATED BY: JMD CHECKED BY:																
$\begin{gathered} \hline \text { SUB-BASIN } \\ \text { DATA } \\ \hline \end{gathered}$			$\begin{gathered} \hline \text { INITIAL } \\ \text { TIME (} \mathbf{T}_{\mathbf{i}} \text {) } \end{gathered}$			$\begin{aligned} & \text { TRAVEL TIME } \\ & \left(\mathrm{T}_{\mathrm{t}}\right) \end{aligned}$					Tc CHECK(URBANIZED BASINS)					$\begin{gathered} \hline \text { FINAL } \\ \text { Tc } \\ \hline \end{gathered}$
DESIGN BASIN (1)	$\begin{gathered} \hline \text { AREA } \\ \text { Ac } \\ \text { (2) } \\ \hline \end{gathered}$	C5 (3)	 LENGTH Ft (4)	$\begin{gathered} \hline \text { SLOPE } \\ \% \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} T_{i} \\ \text { Min. } \\ (6) \end{gathered}$	LENGTH Ft. (7)	$\begin{gathered} \hline \text { SLOPE } \\ \% \\ (8) \\ \hline \end{gathered}$	C_{v} (9)	$\begin{gathered} \hline \text { VEL } \\ \text { fps } \\ (11) \\ \hline \end{gathered}$	T_{t} Min. (12)	$\begin{gathered} \hline \text { COMP. } \\ \text { tc } \\ (13) \\ \hline \end{gathered}$	TOTAL LENGTH (14)	TOTAL SLOPE (15)	TOTAL IMP. (16)	$\begin{gathered} \hline \text { Tc } \\ \text { Min. } \\ (17) \\ \hline \end{gathered}$	Min.
On-Site Basins																
A1	3.990	0.545	300	2.0\%	14.0	685	2.0\%	20.0	2.8	4.0	18.0	985	2.0\%	54\%	23.7	18.0
$t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{o}^{0.33}}$			$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$				$t_{t}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$									

DETENTION BASIN OUTLET STRUCTURE DESIGN

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
(WQCV)	1.32	0.072	Orifice Plate
! (EURV)	3.18	0.182	Orifice Plate
00-year)	4.13	0.127	Weir\&Pipe (Restrict)
	Total (all zones)	0.381	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underd	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	ft^{2}
	N/A			N/A	feet
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row	5.903E-03	ft^{2}
Depth at top of Zone using Orifice Plate $=$	3.18	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	12.70	inches	Elliptical Slot Centroid $=$	N/A	feet
Orifice Plate: Orifice Area per Row $=$	0.85	sq. inches (diameter = 1 inch)	Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.06	2.12					
Orifice Area (sq. inches)	0.85	0.85	0.85					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	kow 15 (optiona	kow 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Recta Invert of Vertical Orifice $=$	ular)		
	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	
Vertical Orifice Diameter $=$	N/A	N/A	inches

	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected	
Vertical Orifice Area $=$	N/A	N/A	ft^{2}
Vertical Orifice Centroid $=$	N/A	N/A	feet

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, $\mathrm{Ho}=$	Zone 3 Weir	Not Selected
	3.20	N/A
Overflow Weir Front Edge Length =	3.00	N/A
Overflow Weir Grate Slope =	0.00	N/A
Horiz. Length of Weir Sides =	3.00	N/A
Overflow Grate Type =	Type C Grate	N/A
Debris Clogging \% =	50\%	N/A

(and No Outlet Pipe)
$=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$
Overflow Weir Slope Length
Grate Open Area / 100-yr Orifice Area $=$
Overflow Grate Open Area w/o Debris $=$
Overflow Grate Open Area w/ Debris $=$

Calculated Parameters for Overflow Weir		
Zone 3 Weir	Not Selected	
3.20	N/A	feet
3.00	N/A	feet
1.99	N/A	
6.26	N/A	ft^{2}
3.13	N/A	ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)				Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restricto	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area $=$ Outlet Orifice Centroid =	Zone 3 Restrictd	Not Selected	$f_{\mathrm{ft}^{2}}$
	0.00	N/A			3.14	N/A	
	24.00	N/A			1.00	N/A	
Restrictor Plate Height Above Pipe Invert =	24.00		inches Half-Central	Restrictor Plate on Pipe $=$	3.14	N/A	radians

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=0.28$
Stage at Top of Freeboard	$=4.33$
feet	
Basin Area at Top of Freeboard	$=0.16$
acres	
Basin Volume at Top of Freeboard	$=0.41$
	acre-ft

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=[}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	0.84	1.12	1.37	1.75	2.08	2.43	3.35
CUHP Runoff Volume (acre-ft) =	0.072	0.254	0.126	0.172	0.219	0.299	0.388	0.497	0.782
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.126	0.172	0.219	0.299	0.388	0.497	0.782
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.0	0.0	0.0	0.1	0.8	1.8	4.2
गTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.00	0.01	0.02	0.20	0.45	1.06
Peak Inflow Q (cfs) =	N/A	N/A	1.6	2.2	2.8	4.1	5.6	7.4	11.7
Peak Outflow Q (cfs) $=$	0.0	0.1	0.1	0.1	0.1	0.5	1.8	3.8	9.0
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	5.9	3.1	6.2	2.3	2.1	2.1
Structure Controlling Flow $=$	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Dverflow Weir	1Overflow Weir	Spillway
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	N/A	N/A	0.1	0.3	0.6	1.1
Max Velocity through Grate 2 (fps) $=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) $=$	37	58	47	53	57	60	58	56	51
Time to Drain 99\% of Inflow Volume (hours) =	40	64	51	57	62	67	66	64	62
Maximum Ponding Depth (ft) $=$	1.32	3.18	1.85	2.32	2.73	3.27	3.40	3.53	3.69
Area at Maximum Ponding Depth (acres) $=$	0.08	0.12	0.09	0.10	0.11	0.12	0.13	0.13	0.14
Maximum Volume Stored (acre-ft) =	0.073	0.254	0.115	0.159	0.202	0.265	0.280	0.297	0.319

ow Hydrographs
z user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	1:20:00	0.00	0.00	0.62	0.89	1.17	1.60	2.01	2.59	. 06
10	1:25:00	0.00	0.00	0.56	0.81	1.03	1.40	1.75	2.18	3.38
	1:30:00	0.00	0.00	0.50	0.72	0.90	1.19	1.48	1.81	2.78
	1:35:00	0.00	0.00	0.44	0.65	0.79	1.01	1.24	1.47	2.22
	1:40:00	0.00	0.00	0.40	0.56	0.70	0.84	1.02	1.18	1.75
	1:45:00	0.00	0.00	0.38	0.51	0.65	0.72	0.86	0.96	1.41
	1:50:00	0.00	0.00	0.37	0.47	0.62	0.65	0.77	0.83	1.21
	1:55:00	0.00	0.00	0.33	0.44	0.59	0.61	0.72	0.76	1.08
	2:00:00	0.00	0.00	0.30	0.41	0.55	0.58	0.68	0.71	1.00
	2:05:00	0.00	0.00	0.24	0.33	0.44	0.46	0.54	0.55	0.77
	2:10:00	0.00	0.00	0.19	0.25	0.34	0.36	0.42	0.42	0.58
	2:15:00	0.00	0.00	0.14	0.20	0.27	0.28	0.33	0.32	0.44
	2:20:00	0.00	0.00	0.11	0.15	0.21	0.21	0.25	0.24	0.33
	2:25:00	0.00	0.00	0.09	0.12	0.16	0.16	0.19	0.19	0.25
	2:30:00	0.00	0.00	0.07	0.09	0.12	0.12	0.14	0.14	0.19
	2:35:00	0.00	0.00	0.05	0.07	0.09	0.09	0.11	0.11	0.14
	2:40:00	0.00	0.00	0.04	0.05	0.07	0.07	0.08	0.08	0.11
	2:45:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.06	0.08
	2:50:00	0.00	0.00	0.02	0.02	0.03	0.04	0.04	0.04	0.06
	2:55:00	0.00	0.00	0.01	0.02	0.02	0.02	0.03	0.03	0.04
	3:00:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02
	3:05:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\stackrel{n}{6}$	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
303	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- 10	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
+ 0	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6.00	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage $\begin{gathered}\text { Description }\end{gathered}$	$\begin{gathered} \hline \text { Stage } \\ {[t t]} \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{gathered} \hline \text { Area } \\ \text { [acres] } \end{gathered}$	Volume [ft^{3}]	$\begin{aligned} & \text { Volume } \\ & \text { [ac-ft] } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Total } \\ \substack{\text { Tutfow } \\ \text { ccts] }} \end{gathered}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the $\mathrm{S}-\mathrm{A}-\mathrm{V}$ table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

*)

SNC•LAVALIN

Member of the SNC-Lavalin Group

72nd Avenue and Colorado Boulevard 90\% Drainage Report

City of Commerce City

23 July 2018

^TKINS

1. Introduction and Background

The Project, Colorado Boulevard and East 72 ${ }^{\text {nd }}$ Avenue Rail Line Station Area Improvement Project, has had significant changes to the scope of work and design approach since the 30\% submittals in March and April of 2017. These changes are the result of coordination with the City of Commerce City (City) and recommendations from Atkins. This report documents the changes and design approach for the 90% design submittal. The changes include:

- Full depth reconstruction of Colorado Boulevard
- 10 ' wide shared use trail in lieu of full construction of $72^{\text {nd }}$ Avenue, west of the Burlington Ditch
- Removal of the surface sand filter along Colorado Boulevard
- Replacing the existing 36-inch storm drain in Colorado Boulevard with a 48-inch pipe

2. General Location and Description

2.1. Location

The Project consist of roadway, drainage, and pedestrian connectivity to the new Regional Transportation District (RTD) station located on $72^{\text {nd }}$ Avenue, west of Colorado Boulevard. The improvements will be to Colorado Boulevard from 70 Avenue to north of $72^{\text {nd }}$ Avenue, along with a temporary trail along $72^{\text {nd }}$ Avenue from the Burlington Ditch to the North Metro Rail Line tracks. The project is approximately 0.28 miles in length within the City of Commerce City, which is located

Figure 2-1 - Vicinity Map within Adams County, Colorado. The project site begins in Range 67 West and ends on the border between Range 67 West and Range 68 West, the northern portion of the project is the border of Township 2 South and Township 3 South and extends south into Township 3 South, and the project crosses from the southwest corner of Section 31 to the northwest corner of Section 6.

2.2. Description of Improvements

The project will reconstruct and widen Colorado Boulevard between $70^{\text {th }}$ Avenue and $72^{\text {nd }}$ Avenue to accommodate new bike lanes and sidewalks. Minor improvements are proposed to the surface of the $72^{\text {nd }}$ Avenue bridge over Burlington Ditch. West of the bridge, a 10 -foot-wide trail will be constructed to provide pedestrian access to the new North Metro Rail Station. The total area for the improvements is approximately 2.4 acres.

3. Drainage Basins and Sub-Basins

3.1. Major Basin Description

This project is part of a watershed tributary to the South Platte River. There are currently no known Major Drainageway Plans or Outfall System Plans for this watershed. Adams County is in the process of preparing a Major Drainageway Plan, but it was not made available for this project.
The Burlington Ditch nearly parallels Colorado Boulevard approximately 50 to 250 feet to the west. Only this portion of Colorado Boulevard and the $72^{\text {nd }}$ Avenue drains directly to the canal.

3.2. Sub-Basin Description

$72^{\text {nd }}$ Avenue, west of the bridge over the Burlington Ditch, generally sheet flows northerly into and through the private Brannon property or to a ditch along the RTD tracks' maintenance access road at the west end of the project. The RTD property to the south generally routes all runoff overland westerly to storm sewer that is then routed to a detention pond to the south.
Colorado Boulevard generally slopes northerly from $70^{\text {th }}$ Avenue to $72^{\text {nd }}$ Avenue. A shallow roadside ditch along the west shoulder conveys runoff northerly to the Burlington Ditch near $72^{\text {nd }}$ Avenue. The east half of the road generally flows into the adjacent residential properties and continues northerly to a depression south of the Adams County Human Services Building. Approximately 27 acres of tributary area drains to the Adams County Human Services Building parking lot and is inadvertently detained. Flows from the parking lot drain to the existing storm drain in Colorado Boulevard. Figure 2-1 shows the existing drainage patterns.

Figure 3-1 - Existing Drainage Patterns
^TKINS

5.2.5.3. Tailwater Analysis

Once the City confirmed that the existing storm drain system in $70^{\text {th }}$ Avenue would be the outfall for the project, an appropriate tailwater elevation for the existing system needed to be determined.
Initially, the entire downstream system was modeled to the outfall at the South Platte River. This analysis showed that the existing 72-inch storm drain between the outfall and the RTD corridor would require the HGL to be well above the existing ground. Figure $5-3$ shows the profile for this model.

South Platte River Assumed Free Outfall

Figure 5-3-100-Year HGL, Assuming Free Outfall at South Platte River

Based on the results of this analysis, it was assumed that the system that the system would surcharge the manhole at the transition between the 48-inch pipe and 72 -inch pipe. The tailwater for this assumption was set to the rim of the manhole, 5109.74 feet. Figure $5-4$ shows the assumed HGL in the existing downstream pipe system.

Figure 5-4 - 100-Year HGL, Assuming Relief at Manhole

5.2.5.4. Water Quality

The original plan was to treat the Water Quality Capture Volume (WQCV) for Colorado Boulevard in a surface sand filter located southwest of the $72^{\text {nd }}$ Avenue and Colorado Blvd intersection. However, trying to drain the low point of the road to the basin was severely limiting the allowable storage volume of the sand filter. In addition, conveying runoff to the sand filter would require parallel storm drain alignments. As an alternative, Atkins' proposed using a hydrodynamic separator. This change was approved by the City in June 2018.

5.2.6. Analysis Scenarios

Three different analysis were considered: 5-Year proposed, 100-Year proposed, 100-Year future. The 5-Year and 100-Year scenarios include the project improvements only, and do not consider future improvements to the $70^{\text {th }}$ Avenue storm drain and the option for additional improvements along $72^{\text {nd }}$ Avenue.

The 100-Year future scenario includes recommendations from the Fairfax Park Outfall Improvements Hydrologic Analysis to upsizing the existing storm in $70^{\text {th }}$ Avenue and make modifications to the Fairfax Park detention basin.

The scenario also includes recommendations from Atkins to construct an additional storm drain system along $72^{\text {nd }}$ and a new detention pond at Alsup Elementary School. These improvements along $72^{\text {nd }}$
Avenue will provide attenuation that is crucial for the proposed 48-inch storm drain Colorado Boulevard to meet design criteria. The existing drainage basin contributing flow to Colorado from $72^{\text {nd }}$ is approximately 27 acres, generating roughly 85 cfs in the 100-year storm. Intercepting this entire flow at the intersection of $72^{\text {nd }}$ Avenue and Colorado Boulevard is impractical. Intercepting this flow would require a large bank of inlets and a much larger trunk line within Colorado Boulevard.

5.2.6.1. 5-Year Proposed

The 5-Year Proposed analysis was conducted to analyze the minor storm event upon completion of the project. The Fairfax Park Outfall Improvements Hydrologic Analysis includes 100-yearr flow rates for the existing, the interim, and final condition for the storm drain within $70^{\text {th }}$ Avenue. The system is currently in the "interim" condition. The 100-year peak flow directly upstream of the project tie in has been estimated at 126.7 cfs. The 5 -year flow rate was determined by scaling the 100-year flow by the ratio of rainfall intensities. This assumes that the runoff coefficients are the same in the 5-year and 100year. While the 5 -year runoff coefficient would be smaller than the 100-year, resulting in less runoff, this is a conservative assumption. The 5 -year flow rate injected upstream of the project was 70 cfs. Figure $5-3$ summarizes the proposed 5 -year analysis. Table $5-1$ summarizes the flow rates, depth of flow, and spread at each proposed inlet.

Table 5-1 - 5-Year Proposed Analysis Inlet Summary

Inlet ID	Flow Rate (cfs)	By-Passed (cfs)	Depth of Flow* (in)	Spread (ft)
A-CO-IN-1	1.2	0.0	4.5	18.7
A-CO-IN-2	35.4	29.1	7.6	25.4
B-CO-IN-1	4.7	2.0	4.7	13.5
B-CO-IN-2	3.1	0.9	4.3	11.5
C-CO-IN-1	5.6	2.7	5.3	15.7
C-CO-IN-2	3.4	1.1	4.6	12.7
D-CO-IN-1	6.1	1.7	3.7	32.0
D-CO-IN-2	29.6	15.9	8.7	16.9

*Governing Criteria is that the max depth in the gutter cannot exceed 6 -inches

5.2.6.2. 100-Year Proposed

The 100-Year proposed analysis was conducted to analyze the major storm event upon completion of the project. The 126.7 cfs determined by the Fairfax Park Outfall Improvements Hydrologic Analysis was injected directly upstream of the project location. The results of this analysis show that in the 100year event, the system will surcharge on to the street. Flows along Colorado will flow north and inundate the Adams County Parking Lot. This matches the existing condition. Figure 5-4 summarizes the proposed 100-year analysis. Table 5-2 summarizes the flow rates, depth of flow, and spread at each proposed inlet.

Table 5-2 - 100-Year Proposed Analysis Inlet Summary

Inlet ID	Flow Rate (cfs)	By-Passed (cfs)	Depth of Flow* (in)	Spread (ft)
A-CO-IN-1	20.7	0.0	7.0	29.0
A-CO-IN-2	85.5	76.6	10.1	35.6
B-CO-IN-1	13.8	9.5	6.5	18.0
B-CO-IN-2	9.1	5.5	5.9	18.0
C-CO-IN-1	13.5	9.2	6.9	18.0
C-CO-IN-2	7.9	4.5	5.8	18.0
D-CO-IN-1	17.5	10.6	4.9	32.0
D-CO-IN-2	77.6	56.3	12.1	24.4

*Governing Criteria is that the max depth in the gutter cannot exceed 12-inches

5.2.6.3. 100-Year Future

The 100-Year future model incorporates conceptual recommendations from both the Fairfax Park Outtall Improvements Hydrologic Analysis and Atkins. The City has plans to redevelop the area around the new RTD station. As such, it is expected that the drainage system within the area will be improved in the coming years.
The 100-year future model was analyzed to document that the Project improvements, while not meeting all the design criteria due to limitations with the existing adjacent systems, will meet the design criteria once future improvements are made.

The future conditions analysis assumes that:

- The existing 72-inch pipe between the west side of the RTD corridor and the South Platte River will be upsized. Initial calculations indicate that it will need to be a 7 -foot x 6 -foot box culvert.
- The 48 -inch pipe in $72^{\text {nd }}$ Avenue will be upsized to 72 -inch pipe, per the recommendation in the Fairfax Park Outfall Improvement Hydrologic Analysis.
- The 100-year flow rate in the future 72 -inch pipe will be 317.83 cfs, per the Fairfax Park Outfall Improvement Hydrologic Analysis.
- A new storm drain system will be constructed along $72^{\text {nd }}$ Avenue, to the east of the project. This system includes:
- Trunk line along 72 ${ }^{\text {nd }}$, between Colorado Boulevard and Cherry Street.
- Full spectrum detention pond at Alsup Elementary School. The basin would be in the north-east corner of the school. It would provide water quality, and 100-year detention. The peak 100-year flow rate from the pond would be 21 cfs . The conceptual design calls for a smaller, deeper portion of the pond to detain smaller, more frequent events. The 100-year event would be contained in higher portion of the basin. This section of the basin would be roughly the size of a soccer field, and depressed 3 feet from the surrounding area.
To accommodate the future work, the project will upsize, extend, and vertically realign the existing storm drain line in Colorado Boulevard. This work will provide a connection for the future improvements to the outfall pipe in $70^{\text {th }}$ Avenue.
Results from the 100-year future analysis shows major improvements to the new 48-inch pipe under Colorado Blvd (Line A), as well as reduction in peak flows being by-passed into the Adams County Parking Lot. This will result in a reduction of flooding within the parking lot. Figure 5-5 summarizes the future 100-year analysis. Table 5-3 summarizes the flow rates, depth of flow, and spread at each proposed inlet, while table 5-4 summarizes compliance with the design criteria.
^TKINS

Table 5-3-100-Year Future Analysis Inlet Summary

Inlet ID	Flow Rate (cfs)	By-Passed (cfs)	Depth of Flow (in)	Spread (ft)
A-CO-IN-1	20.7	0.0	7.0	29.0
A-CO-IN-2	1.1	0.0	2.8	5.4
B-CO-IN-1	13.8	9.5	6.5	18.0
B-CO-IN-2	9.1	5.5	5.9	18.0
C-CO-IN-1	13.5	9.2	6.9	18.0
C-CO-IN-2	7.9	4.5	5.8	18.0
D-CO-IN-1	17.5	10.6	4.9	32.0
D-CO-IN-2	1.0	0.0	2.9	4.0

Table 5-4 - Design Criteria Compliance Summary

Criteria	5-Year Proposed	$100-$ Year Proposed	$100-$ Year Future
Spread	Fail	n / a	n / a
Depth	Fail	Fail	Pass
HGL	n / a	Fail	Pass
Pipe Capacity	Pass	n / a	n / a

Figure 5-5 - 5-Year Proposed Layout

Figure 5-6-100-Year Proposed Layout

Figure 5-7-100-Year Future Layout

Appendices

A. Hydrologic Computations

1. Existing Drainage Area Map
2. Proposed Drainage Area Map
3. Future Drainage Area Map
4. Minor and Major Storm Runoff Calculations
5. Excerpts from the City of Commerce City Storm Drainage Design and Technical Criteria Manual
B. Hydraulic Computations
6. InRoads Results
7. UD-Inlet Results
C. Reference Material
8. Flood Insurance Rate Map
9. NRCS Web Soils Survey
10. Fairfax Park Outfall Hydrologic Analysis

Appendix A. Hydrologic Computations

A.1. Existing Drainage Area Map

The existing drainage area maps show the existing drainage patterns for the Project Area. The patterns assume that the RTD North Metro Station is fully constructed and is an existing drainage feature.

A.2. Proposed Drainage Area Map

The proposed drainage area maps show the drainage patterns and tributary area once the Project has been constructed. They do not account for any future work.

A.3. Future Drainage Area Map

The future drainage area maps show the drainage patterns and tributary area used in the future conditions analysis. They are based upon the recommendations in the Fairfax Park Outfall Improvements Hydrologic Analysis as well as recommendations from Atkins.

A.4. Minor and Major Storm Runoff Calculations

Equations used:

$Q=\boldsymbol{C i} \boldsymbol{A}$
Where:
Q = Peak Flow Rate (cfs)
i = Rainfall Intensity (in/hr)
A = Runoff Area (ac)
$t_{i}=\frac{1.8\left(1.1-C_{5}\right) \sqrt{L}}{3 \sqrt{S}}$
Where:
$\mathrm{t}_{\mathrm{i}}=$ Initial Overland Flow Travel Time (min)
$\mathrm{C}_{5}=5$-Year runoff coefficient
L = Length of Overland Flow Path (ft)
S = Slope of Overland Flow Path (ft/ft)
$\boldsymbol{T}_{c \text { max }}=\frac{L}{\mathbf{1 8 0}}+\mathbf{1 0}$
Where:
$\mathrm{T}_{\mathrm{c} \text { max }}=$ Maximum Time of Concentration
$\mathrm{L}=$ Length of Basin Flow Path (ft)
City of Commerce City C Values

C3 Storm Drainage Design and Technical Criteria Manual Table 501					
Land Use	\% Impervious	$\mathbf{2 - Y r}$	$\mathbf{5 - Y r}$	$\mathbf{1 0 0}-\mathrm{YR}$	Land Use full
Res.	45%	0.40	0.45	0.60	Single Family
Paved	100%	0.87	0.88	0.93	Paved Streets
Walks	96%	0.87	0.87	0.89	Drives and Walks
Schools	50%	0.45	0.50	0.70	Schools

Rainfall Data
City of Commerce City Storm Drainage Design and Criteria
Manual Table 402
$\mathbf{T c}$ $\mathbf{2 - Y r}$ $\mathbf{5 - Y r}$ $\mathbf{1 0 - Y r}$ $\mathbf{5 0 - Y r}$ $\mathbf{1 0 0}-\mathbf{Y r}$ 5 3.36 4.80 5.40 7.80 9.00 10 2.58 3.72 4.20 6.06 6.96 15 2.16 3.12 3.52 5.12 5.88 30 1.50 2.16 2.44 3.54 4.08 60 0.95 1.37 1.55 2.24 2.58

[^3]| C3 Storm Draiange Design Criteria Manual Figure 501 |
| :--- |
| Slope Paved Gutter Bare Ground Short Grass
 0.0% 0.00 0.00 0.00 0.00
 0.5% 1.55 1.55 0.70 0.50
 1.0% 1.95 1.95 1.05 0.70
 2.0% 2.80 2.80 1.40 1.00
 3.0% 3.50 3.50 1.75 1.30
 5.0% 4.50 4.50 2.20 1,7
 10.0% 6.40 6.40 3.10 2.20
 20.0% 8.00 8.00 4.40 3.20
 30.0% 11.50 11.50 5.50 3.90
 50.0% 15.00 15.00 7.00 5.00 |

Member of the SNC-Lavalin Group

Condition	Proposed			Return	Period	$5-\mathrm{Yr}$																		
Area ID				$\frac{\frac{0}{\sqrt{n}}}{\substack{0}}$				$\frac{\stackrel{0}{N}}{\frac{0}{N}}$				$\begin{aligned} & \frac{0}{\sqrt{10}} \\ & 0 \end{aligned}$				$\frac{\stackrel{0}{N}}{\frac{0}{N}}$	$\begin{aligned} & \otimes \\ & \stackrel{\otimes}{3} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \stackrel{0}{<} \underset{\mathbb{O}}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{\bar{D}} \\ & \text { D } \\ & \underline{\underline{E}} \\ & \frac{0}{\circ} \end{aligned}$	$\begin{aligned} & \frac{0}{\sqrt{0}} \\ & \frac{0}{2} \end{aligned}$	Total Area (ac)	Weighted C	Weighted \% Impervious	Paved Area (ac)
A-A-CO-IN-1	Paved	0.2841	100\%	0.8800	Res.	0.0132	45\%	0.4500													0.2973	0.8610	97.6\%	0.2841
A-A-CO-IN-2	Paved	4.0933	100\%	0.8800	Res.	16.9064	45\%	0.4500	Schools	6.5044	50\%	0.5000									27.5040	0.5258	54.4\%	4.0933
A-B-CO-IN-1	Paved	0.1321	100\%	0.8800	Res.	0.6472	45\%	0.4500													0.7793	0.5229	54.3\%	0.1321
A-B-CO-IN-2	Paved	0.1749	100\%	0.8800	Res.	0.5872	45\%	0.4500													0.7621	0.5487	57.6\%	0.1749
A-C-CO-IN-1	Paved	0.2949	100\%	0.8800	Res.	2.0293	45\%	0.4500													2.3242	0.5046	52.0\%	0.2949
A-C-CO-IN-2	Paved	0.2301	100\%	0.8800	Res.	1.1169	45\%	0.4500													1.3471	0.5235	54.4\%	0.2301
A-D-CO-IN-1	Paved	0.5327	100\%	0.8800	Res.	1.4012	45\%	0.4500													1.9339	0.5684	60.1\%	0.5327
A-D-CO-IN-2	Paved	0.1196	100\%	0.8800																	0.1196	0.8800	100.0\%	0.1196
A-EX-71-IN-1	Paved	0.2149	100\%	0.8800	Res.	4.1617	45\%	0.4500													4.3766	0.4711	47.7\%	0.2149
A-EX-CO-IN-1	Paved	4.2909	100\%	0.8800	Res.	0.3157	45\%	0.4500													4.6066	0.8505	96.2\%	4.2909
A-CO-LOT	Res.	2.1111	45\%	0.4500																	2.1111	0.4500	45.0\%	0.0000
A-A-CO-IN-2 (Fut)	Paved	0.1373	100\%	0.8800																	0.1373	0.8800	100.0\%	0.1373

Member of the SNC-Lavalin Group

Condition	Proposed			Retu	Period	100-YR																		
Area ID				$\frac{\stackrel{0}{\frac{1}{n}}}{\substack{\sim}}$				$\begin{aligned} & \frac{0}{\sqrt{01}} \\ & 0 \end{aligned}$				$\frac{0}{\frac{0}{\pi}}$				$\frac{\frac{0}{\sqrt{1}}}{0}$	$\begin{aligned} & \stackrel{\otimes}{\stackrel{1}{2}} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$			$\frac{\stackrel{0}{5}}{\frac{0}{0}}$	Total Area (ac)	Weighted C	Weighted \% Impervious	Paved Area (ac)
A-A-CO-IN-1	Paved	0.2841	100\%	0.93	Res.	0.0132	45\%	0.60													0.2973	0.9154	0.9756	0.2841
A-A-CO-IN-2	Paved	4.0933	100\%	0.93	Res.	16.9064	45\%	0.60	Schools	6.5044	50\%	0.70									27.5040	0.6728	0.5437	4.0933
A-B-CO-IN-1	Paved	0.1321	100\%	0.93	Res.	0.6472	45\%	0.60													0.7793	0.6559	0.5432	0.1321
A-B-CO-IN-2	Paved	0.1749	100\%	0.93	Res.	0.5872	45\%	0.60													0.7621	0.6757	0.5762	0.1749
A-C-CO-IN-1	Paved	0.2949	100\%	0.93	Res.	2.0293	45\%	0.60													2.3242	0.6419	0.5198	0.2949
A-C-CO-IN-2	Paved	0.2301	100\%	0.93	Res.	1.1169	45\%	0.60													1.3471	0.6564	0.5440	0.2301
A-D-CO-IN-1	Paved	0.5327	100\%	0.93	Res.	1.4012	45\%	0.60													1.9339	0.6909	0.6015	0.5327
A-D-CO-IN-2	Paved	0.1196	100\%	0.93																	0.1196	0.9300	1.0000	0.1196
A-EX-71-IN-1	Paved	0.2149	100\%	0.93	Res.	4.1617	45\%	0.60													4.3766	0.6162	0.4770	0.2149
A-EX-CO-IN-1	Paved	4.2909	100\%	0.93	Res.	0.3157	45\%	0.60													4.6066	0.9074	0.9623	4.2909
A-CO-LOT	Res.	2.1111	45\%	0.60																	2.1111	0.6000	0.4500	0.0000
A-A-CO-IN-2 (Fut)	Paved	0.1373	100\%	0.93																	0.1373	0.9300	1.0000	0.1373

SNC•LAVALIN

Member of the SNC-Lavalin Group

Area ID	Discharge To	Total Area	Propsed C Values		Propsed Tc	Rainfall Intensity		Peak Flow Rate	
			$5-\mathrm{Yr}$	$100-\mathrm{Yr}$		$5-\mathrm{Yr}$	$100-\mathrm{Yr}$	$5-\mathrm{Yr}$	$100-\mathrm{Yr}$
		(ac)			(min)	(in/hr)	(in/hr)	(cfs)	(cfs)
A-A-CO-IN-1	A-CO-IN-1	0.30	0.86	0.92	5.00	4.80	9.00	1.23	2.45
A-A-CO-IN-2	A-CO-IN-2	27.50	0.53	0.67	25.51	2.45	4.62	35.40	85.47
A-B-CO-IN-1	B-CO-IN-1	0.78	0.52	0.66	5.00	4.80	9.00	1.96	4.60
A-B-CO-IN-2	B-CO-IN-2	0.76	0.55	0.68	5.00	4.80	9.00	2.01	4.63
A-C-CO-IN-1	C-CO-IN-1	2.32	0.50	0.64	5.00	4.80	9.00	5.63	13.43
A-C-CO-IN-2	C-CO-IN-3	1.35	0.52	0.66	5.00	4.80	9.00	3.38	7.96
A-D-CO-IN-1	D-CO-IN-1	1.93	0.57	0.69	5.00	4.80	9.00	5.28	12.03
A-D-CO-IN-2	D-CO-IN-2	0.12	0.88	0.93	5.00	4.80	9.00	0.51	1.00
A-EX-71-IN-1	EX-71-IN-1	4.38	0.47	0.62	5.00	4.80	9.00	9.90	24.27
A-EX-CO-IN-1	EX-CO-IN-1	4.61	0.85	0.91	5.00	4.80	9.00	18.81	37.62
A-CO-LOT	--	2.11	0.45	0.60	5.00	4.80	9.00	4.56	11.40
A-A-CO-IN-2 (Fut)	A-CO-IN-2 (Fut)	0.1373	0.88	0.93	5.00	4.80	9.00	0.58	1.15

 the future system

Appendix B. Hydraulic Computations

B.1. InRoads Results

ID	HGL	Inv. In		Inv. Out		Rim El.	Total Flow	Time to Structure
	(ft)		(ft)		(ft)	(ft)	(cfs)	(min)
A-CO-MH-1	5120.76	(N)	5116.29	(S)	5116.09	5131.49	32.62	27.87
		(E)	5119.68					
		(W)	5122.11					
A-CO-MH-2	5120.91	(N)	5118.00	(S)	5117.80	5130.36	26.03	27.11
A-CO-MH-3	5119.99	(N)	5118.81	(S)	5118.61	5129.42	26.13	26.79
		(E)	5123.25					
A-CO-MH-4	5120.38	(NE)	5119.51	(S)	5119.31	5128.55	18.89	26.50
		(E)	5121.63					
A-CO-MH-5	5120.81	(NE)	5120.33	(SW)	5120.13	5127.59	6.53	26.02
		(NW)	5123.56					
A-CO-MH-6	5123.12	(NE)	5121.07	(SW)	5120.87	5128.48	5.98	25.59
		(E)	5121.87					
B-CO-HS-1	5123.92	(N)	5122.35	(E)	5122.15	5131.96	10.27	5.56
		(S)	5122.35					
B-CO-MH-1	5125.01	(N)	5124.30	(S)	5123.78	5131.41	4.81	5.21
		(E)	5123.98					
C-CO-BEND-1	5124.55	(SE)	5122.70	(N)	5122.50	5132.10	5.63	5.21
EX-70-MH-1	5117.80	(NE)	5115.80	(W)	5115.80	5131.73	70.00	0.00
EX-70-MH-2	5117.69	(N)	5113.44	(W)	5113.33	5133.87	101.49	29.11
		(E)	5113.33					
EX-70-MH-3	5112.48	(E)	5108.12	(NW)	5107.98	5126.46	101.05	29.60
EX-70-MH-4	5110.49	(SE)	5104.14	(W)	5104.11	5127.31	100.92	29.75
EX-CO-MH-1	0.00	(N)	5118.23	(S)	5117.97	5132.17	0.00	0.00
EX-CO-MH-3	0.00		0.00	(S)	5122.81	5129.69	0.00	0.00
FUT-MH-1	5126.54	(N)	5125.86	(SW)	5121.26	5128.93	0.10	0.00

^TKINS
72nd Avenue \& Colorado Blvd
InRoads Report
5-Yr Pipes

SNC•LAVALIN

Member of the SNC-Lavalin Group

ID	Shape	Width	Height	Material	Inv. In	Inv. Out	Pipe length	Slope	Depth of Flow	HGL In	HGL Out	Capacity	Total Flow	Velocity
		(in)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft/sec)
A-CO-P-1	Circular	48	48	RCP	5116.09	5113.44	530.31	0.50	4.00	5120.75	5117.69	101.57	32.62	2.60
A-CO-P-2	Circular	48	48	RCP	5117.80	5116.29	302.53	0.50	4.00	5120.90	5120.76	101.57	25.91	2.06
A-CO-P-3	Circular	48	48	RCP	5118.61	5118.00	122.47	0.50	1.38	5119.99	5120.91	101.57	26.13	6.77
A-CO-P-4	Circular	48	48	RCP	5119.31	5118.81	99.57	0.50	1.07	5120.38	5119.99	101.57	15.98	5.89
A-CO-P-5	Circular	48	48	RCP	5120.13	5119.51	124.10	0.50	0.69	5120.81	5120.38	101.57	6.53	4.54
A-CO-P-6	Circular	48	48	RCP	5120.87	5120.33	108.40	0.50	0.66	5121.53	5120.99	101.57	5.98	4.42
A-CO-P-7	Circular	18	18	RCP	5124.82	5121.87	49.49	5.97	0.49	5125.31	5122.36	25.66	5.89	11.78
A-CO-P-8	Circular	18	18	RCP	5123.65	5123.56	9.50	1.00	0.35	5124.00	5123.90	10.50	1.23	3.98
B-CO-P-1	Circular	18	18	RCP	5122.15	5122.11	7.02	0.50	1.50	5123.74	5123.61	7.43	10.27	5.81
B-CO-P-2	Circular	18	18	RCP	5123.78	5122.35	123.06	1.16	1.50	5124.60	5123.92	11.32	4.81	2.72
B-CO-P-3	Circular	18	18	RCP	5124.41	5124.30	22.62	0.50	0.62	5125.38	5125.36	7.43	2.65	3.85
B-CO-P-4	Circular	18	18	RCP	5124.20	5123.98	43.25	0.50	0.56	5125.23	5125.01	7.43	2.21	3.67
C-CO-P-1	Circular	18	18	RCP	5122.50	5122.35	30.69	0.50	1.50	5124.42	5123.95	7.43	5.63	3.18
C-CO-P-2	Circular	18	18	RCP	5122.72	5122.70	4.57	0.50	1.50	5124.57	5124.55	7.43	5.63	3.19
C-CO-P-3	Circular	18	18	RCP	5123.10	5122.92	37.00	0.50	1.50	5124.82	5124.67	7.43	2.44	1.38
D-CO-P-1	Circular	24	24	RCP	5122.24	5121.63	43.83	1.40	1.24	5123.48	5122.87	26.77	18.89	9.23
D-CO-P-2	Circular	24	24	RCP	5123.00	5122.44	111.39	0.50	2.00	5125.83	5124.35	16.00	13.78	4.39
EX-70-P-1	Circular	72	72	RCP	5115.80	5113.33	518.92	0.48	2.00	5117.80	5117.69	292.19	70.00	8.49
EX-70-P-2	Circular	72	72	RCP	5113.33	5108.12	391.37	1.33	1.86	5117.69	5112.48	488.49	101.49	13.63
EX-70-P-3	Circular	72	72	RCP	5107.98	5104.14	149.82	2.57	6.00	5110.57	5110.49	678.78	101.05	3.57
EX-71-P-1	Circular	15	15	RCP	5125.86	5119.68	435.60	1.42	0.70	5126.56	5120.76	7.69	4.62	6.55
EX-CO-P-3	Circular	24	24	RCP	5123.95	5123.25	61.75	1.13	1.44	5125.39	5124.69	24.05	20.85	8.62
FUT-P-1	Circular	48	48	RCP	5121.26	5121.07	38.33	0.50	0.10	5123.34	5123.12	101.57	0.10	1.28
P1	Circular	72	72	RCP	5116.02	5115.80	22.38	1.00	1.65	5117.67	5117.80	423.51	70.00	11.08
P2	Circular	15	15	RCP	5125.93	5125.86	14.24	0.50	0.13	5126.63	5126.54	4.57	0.10	1.51
P3	Circular	72	72	RCP	5104.11	5103.47	226.91	0.28	6.00	5110.39	5109.74	100.83	100.92	3.57

Min Velocity $=3 \mathrm{ft} / \mathrm{sec}$.

Capacity>5 Yr Flow

Pipes A-CO-P-1, A-CO-P-2 are sized to convey the 100 yr flows. Decreasing the pipe size or increasing the slope would go against the original intention of being able to convey flows from a future storm drain system in 72nd Ave.
The slope on pipes B-CO-P-3, C-CO-P-3 is controled by the downstream hydrodynamic separator, and cannot be lowered. U/S is constrained by min cover. Pipe is already as small as it can be.
Fut-P-1 and P1, P2, P3 are existing or dummy pipes used to model the tailwater.
Pipes B-CO-P-1 can be upsized b/c it needs to match the other pipes connecting to the hydrodyamic separator. P3 is an existing pipe.

ID	HGL	Inv. In		Inv. Out		Rim El.	Total Flow	Time to Structure
	(ft)		(ft)		(ft)	(ft)	(cfs)	(min)
A-CO-MH-1	5131.77	(N)	5116.29	(S)	5116.09	5131.49	58.32	27.59
		(E)	5119.68					
		(W)	5122.11					
A-CO-MH-2	5130.85	(N)	5118.00	(S)	5117.80	5130.36	48.60	26.95
A-CO-MH-3	5131.13	(N)	5118.81	(S)	5118.61	5129.42	51.59	26.68
		(E)	5123.25					
A-CO-MH-4	5131.36	(NE)	5119.51	(S)	5119.31	5128.55	28.15	26.41
		(E)	5121.63					
A-CO-MH-5	5131.41	(NE)	5120.33	(SW)	5120.13	5127.59	8.98	25.98
		(NW)	5123.56					
A-CO-MH-6	5131.42	(NE)	5121.07	(SW)	5120.87	5128.48	7.90	25.58
		(E)	5121.87					
B-CO-HS-1	5132.36	(N)	5122.35	(E)	5122.15	5131.96	14.81	5.51
		(S)	5122.35					
B-CO-MH-1	5133.97	(N)	5124.30	(S)	5123.78	5131.41	7.28	5.19
		(E)	5123.98					
C-CO-BEND-1	5133.82	(SE)	5122.70	(N)	5122.50	5132.10	7.76	5.19
EX-70-MH-1	5132.63	(NE)	5115.80	(W)	5115.80	5131.73	317.83	0.00
EX-70-MH-2	5126.97	(N)	5113.44	(W)	5113.33	5133.87	374.44	28.66
		(E)	5113.33					
EX-70-MH-3	5123.50	(E)	5108.12	(NW)	5107.98	5126.46	373.88	29.01
EX-70-MH-4	5120.85	(SE)	5104.14	(W)	5104.11	5127.31	373.71	29.12
EX-CO-MH-1	0.00	(N)	5118.23	(S)	5117.97	5132.17	0.00	0.00
EX-CO-MH-3	0.00		0.00	(S)	5122.81	5129.69	0.00	0.00
FUT-MH-1	5131.43	(N)	5125.86	(SW)	5121.26	5128.93	0.10	0.00

HGLs are known to surcharge the 100-yr proposed condition. Existing and proposed overland flow patterns are similar.
^TKINS
Member of the SNC-Lavalin Group
72nd Avenue \& Colorado Blvd

InRoads Report

100-Yr Pipes (Proposed)

ID	Shape	Width	Height	Material	Inv. In	Inv. Out	Pipe length	Slope	Depth of Flow	HGL In	HGL Out	Capacity	Total Flow	Velocity
		(in)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft/sec)
A-CO-P-1	Circular	48	48	RCP	5116.09	5113.44	530.31	0.50	4.00	5130.25	5126.97	101.57	58.32	4.64
A-CO-P-2	Circular	48	48	RCP	5117.80	5116.29	302.53	0.50	4.00	5130.77	5130.31	101.57	48.36	3.85
A-CO-P-3	Circular	48	48	RCP	5118.61	5118.00	122.47	0.50	4.00	5131.00	5130.85	101.57	48.70	3.88
A-CO-P-4	Circular	48	48	RCP	5119.31	5118.81	99.57	0.50	4.00	5131.34	5131.13	101.57	23.20	1.85
A-CO-P-5	Circular	48	48	RCP	5120.13	5119.51	124.10	0.50	4.00	5131.41	5131.36	101.57	8.98	0.71
A-CO-P-6	Circular	48	48	RCP	5120.87	5120.33	108.40	0.50	4.00	5131.42	5131.41	101.57	7.90	0.63
A-CO-P-7	Circular	18	18	RCP	5124.82	5121.87	49.49	5.97	1.50	5131.43	5131.43	25.66	7.81	4.42
A-CO-P-8	Circular	18	18	RCP	5123.65	5123.56	9.50	1.00	1.50	5131.40	5131.41	10.50	2.30	1.30
B-CO-P-1	Circular	18	18	RCP	5122.15	5122.11	7.02	0.50	1.50	5131.61	5132.11	7.43	14.81	8.38
B-CO-P-2	Circular	18	18	RCP	5123.78	5122.35	123.06	1.16	1.50	5133.81	5132.36	11.32	7.28	4.12
B-CO-P-3	Circular	18	18	RCP	5124.41	5124.30	22.62	0.50	1.50	5134.26	5134.03	7.43	3.95	2.23
B-CO-P-4	Circular	18	18	RCP	5124.20	5123.98	43.25	0.50	1.50	5134.23	5133.97	7.43	3.39	1.92
C-CO-P-1	Circular	18	18	RCP	5122.50	5122.35	30.69	0.50	1.50	5133.40	5132.41	7.43	7.75	4.38
C-CO-P-2	Circular	18	18	RCP	5122.72	5122.70	4.57	0.50	1.50	5133.86	5133.82	7.43	7.76	4.39
C-CO-P-3	Circular	18	18	RCP	5123.10	5122.92	37.00	0.50	1.50	5134.47	5134.18	7.43	3.41	1.93
D-CO-P-1	Circular	24	24	RCP	5122.24	5121.63	43.84	1.40	2.00	5124.29	5123.54	26.77	28.15	8.96
D-CO-P-2	Circular	24	24	RCP	5123.00	5122.44	111.30	0.50	2.00	5126.96	5125.40	16.00	19.76	6.29
EX-70-P-1	Circular	72	72	RCP	5115.80	5113.33	518.92	0.48	6.00	5130.77	5127.05	292.19	317.83	11.24
EX-70-P-2	Circular	72	72	RCP	5113.33	5108.12	391.37	1.33	6.00	5126.60	5123.50	488.49	374.44	13.24
EX-70-P-3	Circular	72	72	RCP	5107.98	5104.14	149.82	2.57	6.00	5122.06	5120.85	678.78	373.88	13.22
EX-71-P-1	Circular	15	15	RCP	5125.86	5119.68	435.60	1.42	1.25	5136.90	5131.77	7.69	7.10	5.78
EX-CO-P-3	Circular	36	36	RCP	5123.95	5123.25	61.75	1.13	3.00	5126.32	5125.92	70.90	51.59	7.30
FUT-P-1	Circular	48	48	RCP	5121.26	5121.07	38.33	0.50	4.00	5131.43	5131.42	101.57	0.10	0.01
P1	Circular	72	72	RCP	5116.02	5115.80	22.38	1.00	6.00	5132.78	5132.63	423.51	317.83	11.24
P2	Circular	15	15	RCP	5125.93	5125.86	14.24	0.50	1.25	5131.43	5131.43	4.57	0.10	0.08
P3	Circular	72	72	RCP	5104.11	5103.47	226.91	0.28	6.00	5118.65	5109.74	100.83	373.71	13.22

HGLs are known to surcharge the 100-yr proposed condition. Existing and proposed overland flow patterns are similar.

72nd Avenue \& Colorado Blvd

^TKINS
Member of the SNC-Lavalin Group

ID	HGL	Inv. In		Inv. Out		Rim El.	Total Flow	Time to Structure
	(ft)		(ft)		(ft)	(ft)	(cfs)	(min)
A-CO-MH-1	5121.59	(N)	5116.29	(S)	5116.09	5131.49	110.79	9.23
		(E)	5119.68					
		(W)	5122.11					
A-CO-MH-2	5123.54	(N)	5118.00	(S)	5117.80	5130.36	95.06	8.67
A-CO-MH-3	5124.88	(N)	5118.81	(S)	5118.61	5129.42	95.99	8.44
		(E)	5123.25					
A-CO-MH-4	5124.97	(NE)	5119.51	(S)	5119.31	5128.55	86.42	8.24
		(E)	5121.63					
A-CO-MH-5	5125.60	(NE)	5120.33	(SW)	5120.13	5127.59	78.24	8.00
		(NW)	5123.56					
A-CO-MH-6	5126.05	(NE)	5121.07	(SW)	5120.87	5128.48	76.87	7.78
		(E)	5121.87					
B-CO-HS-1	5124.28	(N)	5122.35	(E)	5122.15	5131.96	14.81	5.51
		(S)	5122.35					
B-CO-MH-1	5125.82	(N)	5124.30	(S)	5123.78	5131.41	7.28	5.19
		(E)	5123.98					
C-CO-BEND-1	5125.60	(SE)	5122.70	(N)	5122.50	5132.10	7.76	5.19
EX-70-MH-1	5123.41	(NE)	5115.80	(W)	5115.80	5131.73	317.83	0.00
EX-70-MH-2	5118.34	(N)	5113.44	(W)	5113.33	5133.87	424.09	10.24
		(E)	5113.33					
EX-70-MH-3	5111.42	(E)	5108.12	(NW)	5107.98	5126.46	423.18	10.58
EX-70-MH-4	5111.07	(SE)	5104.14	(W)	5104.11	5127.31	422.91	10.69
FUT-MH-1	5126.67	(E)	5121.46	(SW)	5121.26	5128.93	75.78	7.70
FUT-MH-2	5126.94	(N)	5126.70	(W)	5121.88	5129.00	76.27	7.53
		(E)	5122.08					
		(S)	5125.76					

^TKINS
Member of the SNC-Lavalin Group
72nd Avenue \& Colorado Blvd
InRoads Report
100-Yr Pipes (Future)

ID	Shape	Width	Height	Material	Inv. In	Inv. Out	Pipe length	Slope	Depth of Flow	HGL In	HGL Out	Capacity	Total Flow	Velocity
		(in)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft/sec)
A-CO-P-1	Circular	48	48	RCP	5116.09	5113.44	530.31	0.50	4.00	5121.53	5118.34	101.57	110.79	8.82
A-CO-P-2	Circular	48	48	RCP	5117.80	5116.29	302.53	0.50	4.00	5123.34	5121.67	101.57	95.06	7.56
A-CO-P-3	Circular	48	48	RCP	5118.61	5118.00	122.47	0.50	4.00	5124.10	5123.54	101.57	95.99	7.64
A-CO-P-4	Circular	48	48	RCP	5119.31	5118.81	99.57	0.50	4.00	5124.90	5124.35	101.57	86.42	6.88
A-CO-P-5	Circular	48	48	RCP	5120.13	5119.51	124.10	0.50	4.00	5125.58	5125.06	101.57	78.24	6.23
A-CO-P-6	Circular	48	48	RCP	5120.87	5120.33	108.40	0.50	4.00	5126.02	5125.67	101.57	76.87	6.12
A-CO-P-7	Circular	18	18	RCP	5124.82	5121.87	49.49	5.97	1.50	5126.63	5126.05	25.66	1.52	0.86
A-CO-P-8	Circular	18	18	RCP	5123.65	5123.56	9.50	1.00	1.50	5126.18	5125.60	10.50	2.30	1.30
B-CO-P-1	Circular	18	18	RCP	5122.15	5122.11	7.02	0.50	1.50	5123.87	5123.61	7.43	14.81	8.38
B-CO-P-2	Circular	18	18	RCP	5123.78	5122.35	123.06	1.16	1.50	5125.73	5124.28	11.32	7.28	4.12
B-CO-P-3	Circular	18	18	RCP	5124.41	5124.30	22.62	0.50	1.50	5126.08	5125.86	7.43	3.95	2.23
B-CO-P-4	Circular	18	18	RCP	5124.20	5123.98	43.25	0.50	1.50	5126.08	5125.82	7.43	3.39	1.92
C-CO-P-1	Circular	18	18	RCP	5122.50	5122.35	30.69	0.50	1.50	5125.30	5124.31	7.43	7.75	4.38
C-CO-P-2	Circular	18	18	RCP	5122.72	5122.70	4.57	0.50	1.50	5125.65	5125.60	7.43	7.76	4.39
C-CO-P-3	Circular	18	18	RCP	5123.10	5122.92	37.00	0.50	1.50	5126.17	5125.88	7.43	3.41	1.93
D-CO-P-1	Circular	24	24	RCP	5122.24	5121.63	43.84	1.40	2.00	5125.64	5124.97	26.77	10.14	3.23
D-CO-P-2	Circular	24	24	RCP	5123.00	5122.44	111.30	0.50	2.00	5125.99	5125.83	16.00	1.51	0.48
EX-70-P-1	Circular	72	72	RCP	5115.80	5113.33	518.92	0.48	6.00	5122.29	5119.33	292.19	317.83	11.24
EX-70-P-2	Circular	72	72	RCP	5113.33	5108.12	391.37	1.33	4.32	5117.65	5112.44	488.49	424.09	19.46
EX-70-P-3	Circular	72	72	RCP	5107.98	5104.14	149.82	2.57	3.43	5111.42	5111.07	678.78	423.18	25.32
EX-71-P-1	Circular	15	15	RCP	5125.86	5119.68	435.60	1.42	1.25	5127.59	5121.59	7.69	7.10	5.78
EX-CO-P-3	Circular	24	24	RCP	5123.95	5123.25	61.75	1.13	1.01	5125.58	5124.88	24.05	12.14	7.67
FUT-P-1	Circular	48	48	RCP	5121.26	5121.07	38.33	0.50	4.00	5126.24	5126.10	101.57	75.78	6.03
FUT-P-2	Circular	48	48	RCP	5121.88	5121.46	84.80	0.49	4.00	5126.92	5126.67	100.50	76.27	6.07
FUT-P-3	Circular	42	42	RCP	5123.70	5122.08	463.67	0.35	3.50	5127.71	5127.01	59.41	21.00	2.18
FUT-P-4	Circular	18	18	RCP	5125.85	5125.76	18.76	0.46	0.77	5127.36	5126.94	7.09	3.73	4.06
FUT-P-5	Circular	18	18	RCP	5126.94	5126.70	47.61	0.49	1.50	5141.00	5128.20	7.38	52.04	29.45
P1	Circular	72	72	RCP	5116.02	5115.80	22.38	1.00	6.00	5123.56	5123.41	423.51	317.83	11.24
P3	Box	84	72	RCB	5104.11	5103.47	226.91	0.28	6.00	5110.30	5109.36	351.02	422.91	10.07

Analysis for future pipes, and upsizing of the existing outfall (P1 \& P3) to be completed by a future designer. Values used in the Future Conditions Model are conceptual.

[^4]

Mark Winnen, Project Manager, Commerce City - PW

Project:	Z-984-22
Location:	7001 Colorado Ave
Review Type:	Annexation, Zone Change, and Vacation of ROW
Fire Code:	2018 International Fire Code with Local Amendments
Planner:	Anita Riley
Date:	$04 / 20 / 2022$
Reviewer:	Savannah Elliott, Fire Prevention Specialist

Comments specific to the Development Review will be in red. These comments require response from the applicant. In addition to submitting a response to Commerce City, South Adams County Fire Department requires responses to be submitted directly to the Reviewer. The 2018 International Fire Code may be referenced at:
https://codes.iccsafe.org/content/IFC2018?site_type=public

General

1. South Adams County Fire Department (SACFD) requires an impact fee of $\$ 250.00$ per unit for multi-family, $\$ 668.00$ per single family dwelling, $\$ 0.06$ per square foot for industrial/warehouse, and $\$ 0.46$ per square foot for commercial/retail of any proposed building. For fees and other information see https://sacfd.org/fireandemergencyservicesimpactfees/
2. SACFD has no comments for the annexation, zone change, or vacation of ROW. That is subject to change as more information is received or if there are changes to the plans during subsequent reviews.

If/when application for construction/building permits are submitted, SACFD will review related plans at that time, to include any related comments.

Please contact your assigned SACFD plans examiner by phone or e-mail if you have any questions regarding the comments on the following pages or if you would like to set up a meeting.

Savannah Elliott

Fire Prevention Specialist
International Code Council - Fire Inspector II Cert \#9533641

Project:	AN-265-22, Z984-22, V-94-22
Location:	7001 Colorado Ave
Review Type:	Annexation, Zone Change, and Vacation of ROW
Fire Code:	2018 International Fire Code with Local Amendments
Planner:	Anita Riley
Date:	03/16/2022
Reviewer:	Savannah Elliott, Fire Prevention Specialist

Comments specific to the Development Review will be in red. These comments require response from the applicant. In addition to submitting a response to Commerce City, South Adams County Fire Department requires responses to be submitted directly to the Reviewer. The 2018 International Fire Code may be referenced at:
https://codes.iccsafe.org/content/IFC2018?site_type=public

General

1. South Adams County Fire Department (SACFD) requires an impact fee of $\$ 250.00$ per unit for multi-family, $\$ 668.00$ per single family dwelling, $\$ 0.06$ per square foot for industrial/warehouse, and $\$ 0.46$ per square foot for commercial/retail of any proposed building. For fees and other information see https://sacfd.org/fireandemergencyservicesimpactfees/
2. At this time SACFD has no comments regarding the Annexation, Zone Change, and Vacation of ROW. This is subject to change as more information is received or if there are changes to the plans during subsequent reviews.

If/when application for construction/building permits are submitted, SACFD will review related plans at that time, to include any related comments.

Please contact your assigned SACFD plans examiner by phone or e-mail if you have any questions regarding the comments on the following pages or if you would like to set up a meeting.

Savannah Elliott

Fire Prevention Specialist
International Code Council - Fire Inspector II Cert \#9533641

Re:	AN-265-22, Z-984-22, V-94-22, S-822-22
Date:	$6 / 9 / 2022$
Review Type:	Multiple Types: Annexation, Vacation, Zoning, Subdivision
Applicant Name:	Prospect
Applicant Address:	4100 E. lliff Ave. \#20, Devner, CO 80205
Project Name:	7001 Colorado Blvd. - Multi Family
Project Location:	7001 Colorado Blvd.
Reviewer:	Jeff Nelson, Development Review Supervisor

SACWSD Rules \& Regulations can be found here:

https://www.sacwsd.org/DocumentCenter/View/776/Rules-and-Regulations?bidId=

SACWSD Design \& Construction Standards can be found here:

https://www.sacwsd.org/DocumentCenter/View/773/SACWSD-Design-Standards-and-Specifications?bidld=

SACWSD Service Application can be found here:

https://www.sacwsd.org/DocumentCenter/View/912/Development-Service-Application-2021?bidId=

SACWSD Developer Checklist can be found here:

https://www.sacwsd.org/DocumentCenter/View/774/General-DevelopmentChecklist?bidId=

General comments to the referenced review can be found below. Any response from the applicant must be sent to SACWSD Development by emailing Development@sacwsd.org.

General Comments:

1. Determine whether the parcel is included in the District. If not, initiate the inclusion process and become included within the District's service area. This process typically takes between 90-180 days to complete. If the parcel is not included, offsite utility construction may be required to provide adequate fire flows to this site.
2. Identify the source and amount of water owned in order to serve the entire development as envisioned and present evidence to support ownership of adequate Equivalent Residential Units (ERUs).
3. Complete the District's service application with corresponding design plans including site, potable water, irrigation water, and wastewater utility plans, plumbing plans, and District standard details.
4. Design and construct the District's water and sewer infrastructure in accordance with current approved Design Standards and Construction Specifications.
5. Per SACWSD rules and regulations each building will be required to have individual water meters and sanitary sewer service lines.
6. Pay appropriate connection fees and pass all required inspections.

Project Special Comments:

No Special Comments.

If you have any questions about the comments given, please contact the SACWSD Development department at (720) $\mathbf{2 0 6} \mathbf{~ - ~} \mathbf{0 5 9 5}$ or email Development@sacwsd.org.

Sincerely,
Jeff Nelson
Development Review Supervisor

From:	$\frac{\text { Tolbert, James -CD }}{\text { To: }}$Subject: $\frac{\text { Riley, Anita -CD }}{\text { FW: 7001 Colorado Blvd }}$ Date: $\frac{\text { Friday, February 25, 2022 8:23:51 AM }}{\text { image002.png }}$ Attachments: $\underline{\text { image004.png }}$ $.$imq

fyi

From: Adame, Kimberly - CD kadame@c3gov.com
Sent: Friday, February 25, 2022 8:22 AM
To: Tolbert, James - CD jtolbert@c3gov.com
Subject: FW: 7001 Colorado Blvd

Comment from SACWD

From: Jeff Nelson JNelson@sacwsd.org
Sent: Friday, February 25, 2022 8:22 AM
To: Adame, Kimberly - CD kadame@c3gov.com; Sharleen Maier smaier@sacwsd.org
Subject: 7001 Colorado Blvd

Sharleen
The below project has the general comments response from SACWSD. No Special Conditions.

Sincerely,

Jeff Nelson

Development Review Supervisor
 jnelson@sacwsd.org

South Adams County Water \& Sanitation District
10200 East $102^{\text {nd }}$ Avenue, Henderson, CO 80640
Direct: 720-206-0593, Cell: 720-530-8396

SOUTH ADAMS COUNTY

[^5]June 9, 2022
Anita Riley
City of Commerce City
Community Development Department
7887 East $60^{\text {th }}$ Avenue
Commerce City, CO 80022
RE: Prospect, S-822-22 \& AN-265-22 - Revised
TCHD Case No. 7615 \& 7616
Dear Ms. Riley,
Thank you for the opportunity to review and comment on the Plat to create a 4.06-acre lot and the second submittal of the Annexation, rezoning, and right-of-way (ROW) vacation for a multi-family housing development located at 7001 Colorado Boulevard. Tri-County Health Department (TCHD) staff previously reviewed the application for the Annexation, Zone Change, and Vacation of ROW and, in a letter dated March 9, 2022 responded with the comments included below. The applicant noted our comments in a letter dated March 28, 2022. TCHD has no further comments.

Historic Landfill

According to TCHD's records, there are historic landfills located within 1,000 feet of the subject property referenced as Landfill No. AD-111, AD-235, AD-065, AD-064, and AD154. Flammable gas from decomposing organic matter in landfills may travel up to 1,000 feet from the source. At such time that construction is planned on this property, we recommend the following:

1. A flammable gas investigation should be conducted to determine if flammable gas (methane) is present in the subsurface soils at the property. The plan for the investigation should be submitted to TCHD for review and approval.
2. TCHD will review the results of the investigation. If the investigation indicates that methane is not present at or above 20% of the lower explosive limit for methane (1% by volume in air) in the soils, no further action is required.
3. In lieu of the investigation, a flammable gas control system shall be designed and constructed to protect buildings and subsurface access to utilities, i.e. vaults, manholes, etc. from flammable gas. Health and safety practices shall be followed during construction to protect site workers. A copy of TCHD guidelines for safe construction in areas on or near former landfills has been attached.

Questions regarding this may be directed to Warren Brown at 720-200-1568 or wbrown@tchd.org.

Community design to support walking and bicycling

Because chronic diseases related to physical inactivity and obesity now rank among the country's greatest public health risks, TCHD encourages community designs that make it easy for people to include regular physical activity, such as walking and bicycling, in their daily routines. Because research shows that the way we design our communities can encourage regular physical activity, TCHD strongly supports community plans that incorporate pedestrian and bicycle amenities that support the use of a broader pedestrian and bicycle network. Increasing multi-modal transportation has additional cobenefits including improved air quality, which can reduce contributions to climate change and exposure to pollutants associated with a number of health problems including asthma, lung cancer, and heart disease.

In order to promote walking and bicycling through this development, TCHD encourages the applicant to consider the inclusion of the following as they design the community.

1. A system of sidewalks, bike paths and open space trail networks that are welldesigned and well-lit, safe, and attractive so as to promote bicycle and pedestrian use.
2. Bicycle and pedestrian networks that provide direct connections between destinations in and adjacent to the community.
3. Where public transportation systems exist, direct pedestrian access should be provided to increase transit use and reduce unnecessary vehicle trips, and related vehicle emissions. The pedestrian/bicycle networks should be integrated with the existing and future transit plans for the area.
4. Streets that are designed to be pedestrian/bike friendly and to reduce vehicle and pedestrian/bicycle fatalities.
5. Bicycle facilities and racks are provided in convenient locations.

Connections to Transit:

Communities that promote walking, bicycling and transit trips can also help protect air quality by reducing vehicle trips and related emissions. TCHD supports projects that address the needs of groups (e.g., seniors, the disabled) who cannot or do not drive. Transit-friendly developments can make it easier for these groups to access services and to maintain connections within the community, which can also have health benefits. The proposed development is located adjacent to the Commerce City \& $72^{\text {nd }}$ Station. TCHD recommends the applicant consider how best to connect the development to the transit station.

Fugitive Dust - Building Demolition

Exposure to air pollution is associated with a number of health problems including asthma, lung cancer, and heart disease. The Colorado Department of Public Health and Environment Air Pollution Control Division (APCD) regulates air emissions. The application indicates that the existing building on the site will be demolished. State air quality regulations require that precautions be taken prior to demolition of buildings to evaluate the presence of asbestos fibers that may present a health risk. If asbestos is present, actions must be taken to prevent their release into the environment. State regulations also address control of ozone depleting compounds (chlorofluorocarbons) that may be contained in air conditioning or refrigerating equipment. The applicant shall contact the APCD at (303) 692-3100 for more information. Additional information is available at http://www.cdphe.state.co.us/ap/asbestos.

Vector Control - Building Demolition

Rodents such as mice and rats carry diseases which can be spread to humans through contact with rodents, rodent feces, urine, saliva, or through rodent bites. For example, Hantavirus Pulmonary Syndrome (HPS), a rare but potentially lethal viral infection, can be found in the droppings and urine of rodents commonly found in southwestern United States. When buildings are demolished, rodents can spread to surrounding properties and increase the risk of vector exposure to humans. The applicant should plan for vectors and eliminate any known infestations prior to demolition. Information on rodent control can be found at http://www.tchd.org/400/Rodent-Control.

Please feel free to contact me at 720-200-1575 or kboyer@tchd.org if you have any questions on TCHD's comments.

Sincerely,

Kathy Boyer, REHS
Land Use and Built Environment Specialist III
cc: Keith Homersham, Warren Brown, TCHD

HEALTH AND SAFETY PRACTICES DURING CONSTRUCTION ON OR NEAR FORMER LANDFILLS

If it has not been demonstrated that flammable gas is not present, the following health and safety practices shall be followed:

1. A flammable gas indicator will be utilized at all times during trenching, excavation, drilling, or when working within ten (10) feet of an open excavation.
2. Before personnel are permitted to enter an open trench or excavation, the trench or excavation will be monitored to ensure that flammable gas is not present in concentrations exceeding 1% and that oxygen is present at a minimum concentration of 19.5%. When in an excavation or trench, each work party will work no more than five (5) feet from a continuous flammable gas and oxygen monitor.
3. When trenching, excavating, or drilling deeper than two (2) feet into the fill, or in the presence of detectable concentrations of flammable gas, the soils will be wetted and the operating equipment will be provided with spark proof exhausts.
4. A dry chemical fire extinguisher, $A B C$ rated, will be provided on all equipment used in the landfill.
5. Personnel within or near an open trench or drill hole will be fully clothed, and wear shoes with non-metallic soles, a hard hat and safety goggles or glasses.
6. Exhaust blowers will be used where trenches show a concentration of 1% flammable gas or a concentration of less than 19.5\% oxygen.
7. Smoking will not be permitted in any area within one hundred (100) feet of the excavation.
8. Personnel will be kept upwind of any open trench unless the trench is continuously monitored.
9. All other applicable Safety and Health Regulations for Construction, as promulgated in 29 CFR by the Occupational Safety and Health Administration, shall be met. Applicable regulations include, but may not be limited to, the confined space standard (Part 1926.21(b)(6)(i) and (ii) in Subpart C); gases, vapors, fumes, dusts and mists (Part 1926.55 in Part 1926 Subpart E); fire protection and prevention (Part 1926 Subpart F); and trenching and excavation (Part 1926 Subpart P).
10. Compliance with the Occupational Safety and Health Administration's confined space requirements for general industry, as promulgated in 29 CFR 1910.146 and Appendices A- F.

March 9, 2022

Anita Riley

City of Commerce City
Community Development Department
7887 East 60 ${ }^{\text {th }}$ Avenue
Commerce City, CO 80022
RE: Prospect, AN-265-22, Z-984-11, V-95-22
TCHD Case No. 7541
Dear Ms. Riley,
Thank you for the opportunity to review and comment on the Annexation, Zone Change, and Vacation of Right-of-Way (ROW) for a multi-family housing development located at 7001 Colorado Boulevard. Tri-County Health Department (TCHD) staff has reviewed the application for compliance with applicable environmental and public health regulations and principles of healthy community design. After reviewing the application, TCHD has the following comments.

Historic Landfill

According to TCHD's records, there are historic landfills located within 1,000 feet of the subject property referenced as Landfill No. AD-111, AD-235, AD-065, AD-064, and AD154. Flammable gas from decomposing organic matter in landfills may travel up to 1,000 feet from the source. Because construction is planned on this property, we recommend the following:

1. A flammable gas investigation should be conducted to determine if flammable gas (methane) is present in the subsurface soils at the property. The plan for the investigation should be submitted to TCHD for review and approval.
2. TCHD will review the results of the investigation. If the investigation indicates that methane is not present at or above 20% of the lower explosive limit for methane (1% by volume in air) in the soils, no further action is required.
3. In lieu of the investigation, a flammable gas control system shall be designed and constructed to protect buildings and subsurface access to utilities, i.e. vaults, manholes, etc. from flammable gas. Health and safety practices shall be followed during construction to protect site workers. A copy of TCHD guidelines for safe construction in areas on or near former landfills has been attached.

Questions regarding this may be directed to Sheila Lynch at 720-200-1571 or slynch@tchd.org.

Community design to support walking and bicycling

Because chronic diseases related to physical inactivity and obesity now rank among the country's greatest public health risks, TCHD encourages community designs that make it easy for people to include regular physical activity, such as walking and bicycling, in their daily routines. Because research shows that the way we design our communities can encourage regular physical activity, TCHD strongly supports community plans that incorporate pedestrian and bicycle amenities that support the use of a broader pedestrian and bicycle network. Increasing multi-modal transportation has additional cobenefits including improved air quality, which can reduce contributions to climate change and exposure to pollutants associated with a number of health problems including asthma, lung cancer, and heart disease.

In order to promote walking and bicycling through this development, TCHD encourages the applicant to consider the inclusion of the following as they design the community.

1. A system of sidewalks, bike paths and open space trail networks that are welldesigned and well-lit, safe, and attractive so as to promote bicycle and pedestrian use.
2. Bicycle and pedestrian networks that provide direct connections between destinations in and adjacent to the community.
3. Where public transportation systems exist, direct pedestrian access should be provided to increase transit use and reduce unnecessary vehicle trips, and related vehicle emissions. The pedestrian/bicycle networks should be integrated with the existing and future transit plans for the area.
4. Streets that are designed to be pedestrian/bike friendly and to reduce vehicle and pedestrian/bicycle fatalities.
5. Bicycle facilities and racks are provided in convenient locations.

Connections to Transit:

Communities that promote walking, bicycling and transit trips can also help protect air quality by reducing vehicle trips and related emissions. TCHD supports projects that address the needs of groups (e.g., seniors, the disabled) who cannot or do not drive. Transit-friendly developments can make it easier for these groups to access services and to maintain connections within the community, which can also have health benefits. The proposed development is located adjacent to the Commerce City \& $72^{\text {nd }}$ Station. TCHD recommends the applicant consider how best to connect the development to the transit station.

Fugitive Dust - Building Demolition

Exposure to air pollution is associated with a number of health problems including asthma, lung cancer, and heart disease. The Colorado Department of Public Health and

Environment Air Pollution Control Division (APCD) regulates air emissions. The application indicates that the existing building on the site will be demolished. State air quality regulations require that precautions be taken prior to demolition of buildings to evaluate the presence of asbestos fibers that may present a health risk. If asbestos is present, actions must be taken to prevent their release into the environment. State regulations also address control of ozone depleting compounds (chlorofluorocarbons) that may be contained in air conditioning or refrigerating equipment. The applicant shall contact the APCD at (303) 692-3100 for more information. Additional information is available at http://www.cdphe.state.co.us/ap/asbestos.

Vector Control - Building Demolition

Rodents such as mice and rats carry diseases which can be spread to humans through contact with rodents, rodent feces, urine, saliva, or through rodent bites. For example, Hantavirus Pulmonary Syndrome (HPS), a rare but potentially lethal viral infection, can be found in the droppings and urine of rodents commonly found in southwestern United States. When buildings are demolished, rodents can spread to surrounding properties and increase the risk of vector exposure to humans. The applicant should plan for vectors and eliminate any known infestations prior to demolition. Information on rodent control can be found at http://www.tchd.org/400/Rodent-Control.

Please feel free to contact me at 720-200-1585 or aheinrich@tchd.org if you have any questions on TCHD's comments.

Sincerely,

Annemarie Heinrich Fortune, MPH/MURP
Land Use and Built Environment Specialist
cc: Sheila Lynch, Keith Homersham, Warren Brown, TCHD

HEALTH AND SAFETY PRACTICES DURING CONSTRUCTION ON OR NEAR FORMER LANDFILLS

If it has not been demonstrated that flammable gas is not present, the following health and safety practices shall be followed:

1. A flammable gas indicator will be utilized at all times during trenching, excavation, drilling, or when working within ten (10) feet of an open excavation.
2. Before personnel are permitted to enter an open trench or excavation, the trench or excavation will be monitored to ensure that flammable gas is not present in concentrations exceeding 1% and that oxygen is present at a minimum concentration of 19.5%. When in an excavation or trench, each work party will work no more than five (5) feet from a continuous flammable gas and oxygen monitor.
3. When trenching, excavating, or drilling deeper than two (2) feet into the fill, or in the presence of detectable concentrations of flammable gas, the soils will be wetted and the operating equipment will be provided with spark proof exhausts.
4. A dry chemical fire extinguisher, $A B C$ rated, will be provided on all equipment used in the landfill.
5. Personnel within or near an open trench or drill hole will be fully clothed, and wear shoes with non-metallic soles, a hard hat and safety goggles or glasses.
6. Exhaust blowers will be used where trenches show a concentration of 1% flammable gas or a concentration of less than 19.5\% oxygen.
7. Smoking will not be permitted in any area within one hundred (100) feet of the excavation.
8. Personnel will be kept upwind of any open trench unless the trench is continuously monitored.
9. All other applicable Safety and Health Regulations for Construction, as promulgated in 29 CFR by the Occupational Safety and Health Administration, shall be met. Applicable regulations include, but may not be limited to, the confined space standard (Part 1926.21(b)(6)(i) and (ii) in Subpart C); gases, vapors, fumes, dusts and mists (Part 1926.55 in Part 1926 Subpart E); fire protection and prevention (Part 1926 Subpart F); and trenching and excavation (Part 1926 Subpart P).
10. Compliance with the Occupational Safety and Health Administration's confined space requirements for general industry, as promulgated in 29 CFR 1910.146 and Appendices A- F.

From: GIS
Subject: GIS Approved Subdivisions
Date: 06/09/2022

The city of Commerce City GIS Division has approved the following subdivision address plats.

S-822-22, AN-265-22, Z-984-22, V-94-22 located at 7001 COLORAD BLVD
S-772-20-21 Legato Filing 1
S-771-20-21 Legato Filing 2

These subdivision cases have satisfied the criteria of the Roadway Naming and Addressing Standards for the city of Commerce City. GIS has no further comments on the addresses for these cases. Final approved address plats have been issued.

[^6]

From:	Commerce City GIS
To:	Riley, Anita - CD
Cc:	Commerce City GIS
Subject:	7001 Colorado Blvd review
Date:	Friday, March 11, 2022 3:57:43 PM
Attachments:	imaqe001.png
	REDLINES 7001ColoradoBlvd.pdf
	COMMENTS 7001ColoradoBlvd 2.docx

Good afternoon,
Attached are updated redlines and comments from GIS for 7001 Colorado Blvd, Case No. AN-265-22, Z-984-22.
GIS has suggested some addresses to use on the conceptual photo.
Please provide an address plat with these addresses as well as units or a drawing showing units and locations when appropriate in the review process.

Please let us know if you have any questions.

Thank you and enjoy your weekend.

$?$

GIS Division, Information Technology Department
City of Commerce City | 7887 E. $60^{\text {th }}$ Avenue | Commerce City, CO 80022
gis@c3gov.com | www.c3gov.com
Quality Community for a Lifetime

From:	DevelopmentSubmittals
To:	Riley, Anita -CD
Subject:	RE: Case Referral AN-265-22, Z-984-22, V-94-22
Date:	Friday, March 18, 2022 3:46:06 PM
Attachments:	image006.png imaqe007.pnq image008.pnd

Hi Anita,

Thank you for including Adams County in the review for Case Referral AN-265-22, Z-984-22, V-94-22. Adams County has no concern with the proposed annexation and zone change to allow for multifamily.

Thank you!

Thanks,

```
Layla Bajelan
Senior Long Range Planner, Community and Economic Development
ADAMS COUNTY, COLORADO
4 4 3 0 \text { S. Adams County Parkway, 1st Floor, Suite W2000A}
Brighton, CO }8060
720.523.6863| LBajelan@adcogov.org | www.adcogov.org
** New Schedule: Tuesday-Friday 7 a.m. to 5:30 p.m..**
County operating hours: Tuesday through Friday, 7 a.m. to 5:30 p.m.
```

From: Memmer, Katelyn - CD kmemmer@c3gov.com
Sent: Tuesday, February 22, 2022 11:02 AM
Cc: Riley, Anita - CD ariley@c3gov.com; Mason, Tricia - CD tmason@c3gov.com; Adame, Kimberly - CD kadame@c3gov.com
Subject: Case Referral AN-265-22, Z-984-22, V-94-22

Please be cautious: This email was sent from outside Adams County

Hello,

On behalf of the Community Development Department of Commerce City, we invite you to review and comment on this land use application referral. Information on the application, including where and when to send comments, can be found below.

Subject: Fwd: 7001 Colorado Boulevard
Date: \quad Friday, January 21, 2022 at 9:44:59 AM Mountain Standard Time
From: Melba Velazquez-Rosario
To: E. Scott McFadden
Attachments: image001.jpg
Good morning Mr McFadden,
Happy to hear our community is growing! We are more than happy to welcome the possibility of serving 100 new families.

Please see the response below from our Executive Director of Operations, Mr. Schwartz.

At your service,
---------- Forwarded message ---------
From: Matt Schwartz mschwart@adams14.org
Date: Fri, Jan 21, 2022 at 8:00 AM
Subject: Re: 7001 Colorado Boulevard
To: Melba Velazquez-Rosario mvelazquez@adams14.org
Cc: Mario Marquez mcmarguez@adams14.org

Hi Melba and Mario,
We have the capacity between Alsup and ACMS and / or KMS to add up to 100 families to these sites. The capacity for Alsup is 600 students. Current enrollment is 463 . Last I heard on ACMS it was at around 740 students as well as KMS. Both schools have had as many as $840+$ We should have space available for this increase and welcome this potential increase in enrollment.

Kind regards, Matt

From:	Matt Schwartz
To:	Riley, Anita-CD
Cc:	Melba Velazquez-Rosario
Subject:	Re: Case Referral S-822-22
Date:	Thursday, April 28, 2022 2:43:02 PM
Attachments:	image001.png
	image004.png

Hi Anita,
I've added Melba Velasquez, our Director of Community Engagement, to add any additional information that I may be missing.

Adams 14 is happily accepting students in our district. Students have a choice to attend any of our schools. The closest schools to this site are:

Alsup Elementary School (Stem): 4413 East 68th Avenue
Adams City Middle School: 4451 E. 72nd Avenue
Adams City High School: 7200 Quebec Parkway
Lester Arnold Alternative High School: 6500 East 72nd Avenue
Other schools include:
Dupont Elementary School (Dual Language) PS-5
Monaco Elementary School PS-5
Hanson Elementary School (Dual Language) PS-5
Kemp Elementary School (Dual Language) PS-5
Central Elementary School (Dual Language) PS-5
Rose Hill Elementary School PS-5
Kearney Middle School 6-8
STARS Preschool
Sanville Preschool
If you have any questions, feel free to give me a call.
Kind regards,
Matt

On Tue, Apr 26, 2022 at 5:56 PM Riley, Anita - CD ariley@c3gov.com wrote:
Hello Matt,
Please excuse my late response.

According to the calculations provided in the Commerce City Land Development Code (LDC), this development is expected to generate approximately 18 students. The calculation is based on market rate housing where the applicant anticipates that this development will have affordable housing. If this is the case, the student rate will likely be higher.

Attached is a copy of a Facts to Know for Park, School, and Water Acquisition Fees. It identifies a school land dedication fee-in-lieu in the amount of $\$ 396.24 /$ student that will be due at building
permit.

A letter from you indicating the elementary, middle, and high schools that would accept the expected students, as well as whether they have capacity to accept them would be very helpful.

Let me know if you need anything else from me.

Regards,

Anita Riley, AICP | Principal Planner

7887 E. $60^{\text {th }}$ Ave. \mid Commerce City, CO 80022
(303) 289-3716 | ariley@c3gov.com

From: Matt Schwartz mschwart@adams14.org
Sent: Monday, April 4, 2022 10:37 AM
To: Memmer, Katelyn - CD kmemmer@c3gov.com
Cc: Riley, Anita - CD ariley@c3gov.com; Mason, Tricia - CD tmason@c3gov.com; Adame, Kimberly - CD kadame@c3gov.com
Subject: Re: Case Referral S-822-22

Hi Katelyn,

Thank you for sharing the planning document. Is there an estimated number of school-aged students that we might expect from these additional residential units?

Kind regards,
Matt

On Thu, Mar 31, 2022 at 12:36 PM Memmer, Katelyn - CD kmemmer@c3gov.com wrote:

> Hello,

On behalf of the Community Development Department of Commerce City, we invite you to review and comment on this land use application referral. Information on the application, including where and when to send comments, can be found below.

REQUEST FOR COMMENT/REVIEW

March 31, 2022

The Community Development Department requests comments on the following:

Please review the proposal and forward written comments to:
City of Commerce City
Community Development Department
amme Aniz= Dilew

```
mavi, memue mancT
7837 East 60* Avenue
```

Commerce City, co sco022

If no response is received by the date below, the assumption will be made that you have no objections or concerns regarding the above proposal.

Comments Due: | April 27, 2022 - This is an expedited review |
| :--- |
| Given certain time constraints, efforts to provide |
| comments early in referral period are much appreciated! |
| Thank you! |

PRT/DRT Date:
 April 21, 2022

Best,

Katelyn Memmer

Administrative Specialist III
City of Commerce City | Community Development
303-289-3679
7887 East 60th Avenue
Commerce City, CO 80022

Matt Schwartz

Executive Director of Operations

Adams County School District 14
m: 720.210.3698 | p: 303.853.8105
5291 East $60^{\text {th }}$ Ave., Commerce City, CO 80022
mschwart@adams14.org | www.adams14.org

Matt Schwartz

Executive Director of Operations

Adams County School District 14
m: 720.210.3698 | p: 303.853.8105
5291 East $60^{\text {th }}$ Ave., Commerce City, CO 80022
mschwart@adams14.org \| www.adams14.org

To: Anita Riley, Planner
From: Traci Ferguson, Parks Planner
Subject: AN-265-22 Z-984-22 V-94-22 7001 Colorado Blvd. Prospect
Date: April 20, 2022

Parks has reviewed the above proposal and has the following comments, which have been previously acknowledged by the applicant. The park fee-in-lieu has been updated to equal the annexation boundary square footage. The final fee will be determined once the plat is finalized.
1.) There will be a park fee-in-lieu associated with any residential portions of this development. Per the current plat it shall be calculated as follows. This calculation will be updated if the developable square footage changes.
$\$ 45,364 / \$ 12,000 \times \$ 0.09 \times 183,344$ sq. ft. $=\mathbf{\$ 6 2 , 3 7 9}$
2.) The park fee will be due at the time a building permit is obtained.
3.) The city has explored constructing a trail along the O'Brian Canal in this area. It would be on the opposite side of the canal from this development and would be contained within the canal right-of-way, utilizing the existing maintenance road. If this project moves forward, (there is currently no timeline) staff will communicate with the developer.

Please feel free to contact me at 303-227-8788 or tferguson@c3gov.com with any questions.

To: Anita Riley, Planner
From: Traci Ferguson, Parks Planner
Subject: AN-265-22 Z-984-22 V-94-22 7001 Colorado Blvd. Prospect
Date: March 16, 2022

Parks has reviewed the above proposal and has the following comments.
1.) There will be a park fee-in-lieu associated with any residential portions of this development. Per the current plat it shall be calculated as follows. This calculation will be updated if the developable square footage changes.
$\$ 45,364 / \$ 12,000 \times \$ 0.09 \times 168,133$ sq. ft. $=\mathbf{\$ 5 7 , 2 0 3}$
2.) The park fee will be due at the time a building permit is obtained.
3.) The city has explored constructing a trail along the O'Brian Canal in this area. It would be on the opposite side of the canal from this development and would be contained within the canal right-of-way, utilizing the existing maintenance road. If this project moves forward, (there is currently no timeline) staff will communicate with the developer.

Please feel free to contact me at 303-227-8788 or tferguson@c3gov.com with any questions.

The Farmers Reservoir and Irrigation Company
 80 South $27^{\text {th }}$ Avenue
 Brighton, CO 80601

PH: 303-659-7373 / FX: 303-659-6077
TO: Anita Riley
DATE:
April 6, 2022
FRICO Project\#

EMAILED: April 6, 2022
EMAILED TO:
ariley@c3gov.com

APPLICANT: Prospect
RE: Development Plan
CASE \#: AN-265, Z-984-22, V-94-22
DEAR Ms. Riley:
I wish to submit the following information regarding the above referenced project.
X The concerns of Farmers Reservoir and Irrigation Company are in the area of encroachment to the Right of Way of the canal. FRICO requires a minimum of 25^{\prime} on each side of the canal for a maintenance road plus the distance to the toe of the ditch embankment. The boundaries of the Right of Way must be agreed upon.
\mathbf{X} Drainage is another concern that must be addressed as FRICO does not allow any developed storm flow into our canals. This will apply if any development happens. Property concerns need to be resolved.
\mathbf{X} No construction of any structure can be put on our ROW. No use of any sort including pedestrian or vehicle on our ROW is approved.
X Please send drainage study and additional information regarding your project so that we may complete our review and that review criteria can be sent to you, if applicable.

X FRICO does not accept retention ponds adjacent to our facilities, however, we may grant a variance with submittal of application and engineering deposit for review of drainage plan and other documents.

X Canal road may not be used for access without approval and executed agreement.

FRICO will require a license agreement
X FRICO may require an access permit
$\mathbf{X} \quad$ FRICO will require a seepage agreement
FRICO No comments on application/proposal
\mathbf{X} We request to comment again.
The applicant \qquad has or_ X has not completed a Project Review Application and submitted a deposit for review fees with the Ditch Company. In addition to the above comments, FRICO's comments are limited to this set of plans.

Please email should you have any questions.
Sincerely,

```
Cheryl Plucker
Cheryl@farmersres.com
720-297-0877
```

From:	Memmer, Katelyn -CD
To:	Riley, Anita -CD
Subject:	FW: Case Referral AN-265-22, Z-984-22, V-94-22
Date: Monday, March 7, 2022 4:01:45 PM Attachments: image001.png imaqe002.pnq imaqe003.pnq lis	

From: Hutchinson, Adam W Adam.W.Hutchinson@xcelenergy.com
Sent: Monday, March 7, 2022 3:43 PM
To: Memmer, Katelyn - CD kmemmer@c3gov.com
Subject: RE: Case Referral AN-265-22, Z-984-22, V-94-22

Katelyn,

Thank you for sending this new link over to me. I was able to confirm that we do not have any easements or fee property within your scope of work.

Thank you for reach our to Xcel to confirm.

Adam Hutchinson

Xcel Energy

Contract Agent, Siting \& Land Rights
1800 Larimer St, Suite 400 Denver, CO 80202
C: 303.547.4717
E: adam.w.hutchinson@xcelenergy.com

From: Memmer, Katelyn - CD kmemmer@c3gov.com
Sent: Monday, March 7, 2022 3:14 PM
To: Hutchinson, Adam W Adam.W.Hutchinson@xcelenergy.com
Subject: RE: Case Referral AN-265-22, Z-984-22, V-94-22

EXTERNAL - STOP \& THINK before opening links and attachments.

Hi Adam,

Please try this link: $]_{\text {AN-265-22, Z-984-22, V-94-22 }}$

Best,

Katelyn Memmer

Administrative Specialist III
City of Commerce City | Community Development

From: Hutchinson, Adam W Adam.W.Hutchinson@xcelenergy.com
Sent: Monday, March 7, 2022 1:42 PM
To: Memmer, Katelyn - CD kmemmer@c3gov.com
Subject: RE: Case Referral AN-265-22, Z-984-22, V-94-22

Afternoon Katelyn,

I was forwarded your request for Xcel's review of the development site in Commerce City. It doesn't look like we have any Transmission Lines our own any fee property around the around in question. However, I was unable to open up the link that was provided and could only base this one looking at the area around Colorado Blvd \& E $70^{\text {th }}$ Ave. Would you please resend that link so I may confirm what I am telling you.

Thank you,

Adam Hutchinson

Xcel Energy
Contract Agent, Siting \& Land Rights
1800 Larimer St, Suite 400 Denver, CO 80202
C: 303.547.4717
E: adam.w.hutchinson@xcelenergy.com

From: Memmer, Katelyn - CD kmemmer@c3gov.com
Sent: Tuesday, February 22, 2022 11:02 AM
Cc: Riley, Anita - CD ariley@c3gov.com; Mason, Tricia - CD tmason@c3gov.com; Adame, Kimberly - CD kadame@c3gov.com
Subject: Case Referral AN-265-22, Z-984-22, V-94-22

EXTERNAL - STOP \& THINK before opening links and attachments.
Hello,
On behalf of the Community Development Department of Commerce City, we invite you to review and comment on this land use application referral. Information on the application, including where and when to send comments, can be found below.

REQUEST FOR COMMENT/REVIEW

February 16, 2022

The Community Development Department requests comments on the following:

Best,

Katelyn Memmer

Administrative Specialist III
City of Commerce City | Community Development
303-289-3679
7887 East 60th Avenue
Commerce City, CO 80022

From: Diedrich, Cheryl L
To: Phelps, Randall; Riley, Anita - CD
Cc: Van Laere, Jacob; George, Donna L; Scott McFadden; JP Aymon
Subject: RE: Commerce City Cases: AN-265-22, Z-984-22, V-94-22 @ 7001 Colorado Blvd
Date: Thursday, June 9, 2022 11:20:11 AM
Attachments: Xcel-Annexation letter response.pdf
Randall,
Thanks for your time this morning, as discussed and detailed in Donna's March 15, 2022 letter
(attached) as long as the party adheres to the terms as set forth in Donna's response letter we have
no objection to the proposed rezone.
Regards,
Cheryl L. Diedrich, CPL

Xcel Energy | Responsible By Nature

Senior Agent, Right of Way \& Permits
1123 West 3rd Ave., Denver, CO. 80223
P: 303-571-3116 C: 303-908-0299 F: 303-571-3284
cheryl.diedrich@xcelenergy.com
From: Phelps, Randall randall.phelps@kimley-horn.com
Sent: Thursday, June 9, 2022 11:08 AM
To: Diedrich, Cheryl L Cheryl.Diedrich@xcelenergy.com
Cc: Van Laere, Jacob Jacob.Van.Laere@xcelenergy.com; George, Donna L
Donna.L.George@xcelenergy.com; Riley, Anita - CD ariley@c3gov.com; Scott McFadden
smcfadden@prospectprop.com; JP Aymon jpaymon@prospectprop.com
Subject: Commerce City Cases: AN-265-22, Z-984-22, V-94-22 @ 7001 Colorado Blvd Hello Cheryl,
As requested by Anita yesterday, below is our response to the attached letter
Xcel Energy,
Thank you for your supportive response to the above cases with Commerce City. We have reviewed the requirements of the letter and recognize that further applications will be required as demolition, relocation or new services are needed associated with forthcoming site and building design. We expect that work to prgress this fall, but not at this time.
The annexation is scheduled to be heard at the City Council meeting on June 20th. Anita Riley with Commerce City can follow up with Jacob Van Laere, also copied here, to assist with the mapping department updates.
Regards,
Randall
Randall J. Phelps, P.E., LEED AP
Kimley-Horn | 4582 South Ulster Street, Suite 1500, Denver, CO 80237
Universal Number: 3032282336 | Mobile: 3039057415 | Main: 3032282300
Connect with us: Kimley-Horn.com | Twitter | LinkedIn | Facebook | Instagram | Randall's Linkedln Profile
Celebrating 15 years as o ne of FORTUNE's 100 Best Companies to Work For Read more

XcelEnergy ${ }^{\text {" }}$

PUBLIC SERVICE COMPANY

Right of Way \& Permits
1123 West $3^{\text {rd }}$ Avenue Denver, Colorado 80223
Telephone: 303.571.3306
Facsimile: 303.571.3284
donna.l.george@xcelenergy.com

March 15, 2022

City of Commerce City Community Development Department
7887 East $60^{\text {th }}$ Avenue
Commerce City, CO 80022
Attn: Anita Riley
Re: 7001 Colorado Boulevard, Case \#s AN-265-22 / Z-984-22 / V-94-22
Public Service Company of Colorado's (PSCo) Right of Way \& Permits Referral Desk has reviewed the plans for 7001 Colorado Boulevard Annexation, Rezone, and Right of Way Vacation. Please be advised that Public Service Company has existing electric distribution facilities within the areas indicated in this proposed rezone. Public Service Company has no objection to this proposed rezone, contingent upon Public Service Company of Colorado's ability to maintain all existing rights and this amendment should not hinder our ability for future expansion, including all present and any future accommodations for natural gas transmission and electric transmission related facilities.

The City of Commerce City must send us notification after approval of the proposed annexation has been finalized. This notification should be sent to Jacob Van Laere (303-571-3818) at: Xcel Energy, 1123 West $3^{\text {rd }}$ Avenue, Denver, Colorado 80223 or jacob.van.laere@xcelenergy.com. This will allow our mapping department to make the necessary updates to our mapping system.

PSCo has no conflict with the Right of Way vacation.
The property owner/developer/contractor must complete the application process for any new natural gas or electric service, or modification to existing facilities via xcelenergy.com/InstallAndConnect. It is then the responsibility of the developer to contact the Designer assigned to the project for approval of design details.

Additional easements will need to be acquired by separate document for new facilities (i.e. transformers) - be sure to have the Designer contact a Right-of-Way and Permits Agent.

As a safety precaution, PSCo would like to remind the developer to call the Utility Notification Center by dialing 811 to have all utilities located prior to any construction.

Donna George
Right of Way and Permits
Public Service Company of Colorado dba Xcel Energy
Office: 303-571-3306 - Email: donna.l.george@xcelenergy.com

[^0]: ${ }^{1}$ Institute of Transportation Engineers, Trip Generation Manual, Eleventh Edition, Washington DC, 2021.

[^1]: ${ }^{2}$ Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

[^2]: Input Value
 Calculated Value / Looked up Input Copied Value from another sheet

[^3]: Input Value
 Calculated Value / Looked up Input Copied Value from another sheet

[^4]: Mark Winnen, Project Manager, Commerce City - PW

[^5]: From: Adame, Kimberly - CD kadame@c3gov.com
 Sent: Friday, February 25, 2022 8:15 AM
 To: Soderlin, Brent - PW bsoderlin@c3gov.com; Claymore, Michelle - CM mclaymore@c3gov.com;
 Jones, Jennifer - CD jjones@c3gov.com; Rogers, Jason - CM jrogers@c3gov.com; Alverson, Lee - PW lalverson@c3gov.com; Renk, Michael - PW mrenk@c3gov.com; Hader, Matt - CA
 mhader@c3gov.com; Jeff Nelson < JNelson@sacwsd.org>; Lowery, Jenna - CM jlowery@c3gov.com;

[^6]: GIS Division, Information Technology Department
 City of Commerce City | 7887 E. $60^{\text {th }}$ Avenue | Commerce City, CO 80022
 gis@c3gov.com I www.c3gov.com
 Quality Community for a Lifetime

