FINAL DRAINAGE REPORT

FOR

REUNION RIDGE FILING NO. 2 CITY OF COMMERCE CITY, COLORADO CASE NO. D-515-21

Prepared for:

Clayton Properties Group II, Inc. Dba Oakwood Homes 4908 Tower Road Denver, CO 80249 Contact: Jim Hayes Phone: 303-486-8644

Prepared by:

CORE Consultants, Inc. 3473 South Broadway Englewood, CO 80113 Contact: Kevin Rohrbough, PE Phone: 303-703-4444 CORE Project Number: 18-004

October 15, 2021

Table of Contents

I.	GENERAL LOCATION AND DESCRIPTION
Α.	Location
B.	Description of Property5
II.	DRAINAGE BASINS AND SUB-BASINS
Α.	Major Basin Description
B.	Sub-Basin Description
III.	DRAINAGE DESIGN CRITERIA 10
Α.	Regulations
B.	Development Criteria Reference and Constraints10
C.	Hydrological Criteria11
D.	Hydraulic Criteria11
IV.	DRAINAGE FACILITY DESIGN11
Α.	General Concept11
B.	Specific Details11
V.	CONCLUSIONS11
Α.	Compliance with Standards11
B.	Drainage Concept12
VI.	REFERENCES13

Appendices

Appendix A Hydrologic Computations

Appendix B Hydraulic Computations

Appendix C Reference Excerpts

Back Pocket

Drainage Maps

Engineer's Statement:

I hereby certify that this final study for Reunion Ridge Filing No. 2, was prepared by me (or under my direct supervision) in accordance with the provisions of the City of Commerce City Storm Drainage Design and Technical Criteria Manual for the owners thereof. I understand that the City of Commerce City does not and will not assume liability for drainage facilities designed by others.

Kevin Rohrbough, P.E. Registered Professional Engineer State of Colorado No. 48992

I. GENERAL LOCATION AND DESCRIPTION

A. Location

Reunion Ridge Filing No. 2 is located in the NW 1/4 of Section 13, Township 2 South, Range 67 West of the Sixth Principal Meridian, City of Commerce, County of Adams, State of Colorado. The project is a separate filing within the Reunion Ridge Village 9 overall development. The site is approximately 0.2 miles south of the intersection of 104th Avenue and Revere Street. The Site is bounded by Reunion Ridge Way to the north and agricultural land to the east, west, and south. Reunion Ridge Filing No. 3, currently in the design phase by the same developer, is located adjacent to Filing No. 2 to the east. Future Turnberry South Residential development (by others) is located adjacent to Filing No. 2 to the west. A vicinity map is included in Appendix A.

The site is located within the DFA-0053 Major Drainage Basin that is tributary to the South Platte River. Existing Detention and Water Quality Pond T (Pond T), previously constructed with Phase 1 of the Reunion Village 9 overall development, is adjacent to the site at the northwest corner, and will receive developed flows from the site.

B. Description of Property

The site is approximately +/-17 acres, with slopes ranging from two to nine percent, and is currently in use as agricultural land.

According to information from the United States Department of Agriculture's (USDA) Natural Resource Conservation Service (NRCS), soils on-site are Ascalon-Vona sandy loam and Platner loam. These soils are further classified as belonging to Hydrologic Soil Groups (HSG) B and C, respectfully. Group B soils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately course textures. Group C soils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately coarse textures. Soils maps are included in Appendix A.

The site lies within Zone X (areas determined to be outside the 0.2% annual chance floodplain) on Flood Insurance Rate Map (FIRM) 08001C0339H, revised March 5, 2007, published by the Federal Emergency Management Agency (FEMA). There are no major drainageways within the site. A floodplain map is included in Appendix A.

Existing ground cover consists of 100 percent tillage. Vegetation in the developed condition will include open space planted with native seed mix, short lawns, and ornamental trees and bushes wherever buildings and hardscape are not proposed.

Proposed site improvements include 147 detached residential units with associated roadway and utility infrastructure.

This report includes discussion and calculations for the drainage facilities proposed with both Filing No. 2 and Filing No. 3. Both filings are also shown on the Drainage Maps as well. This is because both fillings have the same Owner, have been designed together, and will be constructed at approximately the same time. The

facilities associated with Filing No. 3 have been labeled as such throughout the report and Drainage Maps.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Basin Description

The site is located within the southernmost portion the DFA-0053 Major Drainage Basin, a tributary of the South Platte River, draining from southeast to northwest. The DFA-0053 watershed is bounded by the First Creek Major Basin to the south and west and the Second Creek Major Basin to the north and east.

There are no regulatory floodplains within the site. There are no nearby irrigation facilities, to our knowledge, that will influence or be influenced by the local drainage.

B. Sub-Basin Description

Existing runoff from the upstream off-site areas to the south and east surface drains toward the site; however, these flows are directed away from the Filings No. 2 and No. 3 sites by existing swales. A swale exists on the adjacent property to the south along the fence line that directs off-site flows to the west. An existing swale running adjacent to the Vaughn Way right-of-way captures flows from the east and conveys them to Existing Detention and Water Quality Pond T, to the west of the site. Existing hydrologic calculations are included in Appendix A and an Existing Drainage Map is included in the Back Pocket of this report.

Existing sub-basin descriptions:

EX-1

Consists of undeveloped area. Runoff flows overland to the north into an existing swale adjacent to Reunion Ridge Way. The swale conveys flows to the northwest, and discharges into the adjacent Pond T (DP EX1).

EX-2

Consists of roadway area and undeveloped area. Runoff flows overland to the southwest, off-site (DP EX2).

OS-1

Consists of off-site undeveloped area. Runoff flows overland to the northeast into an existing swale adjacent to Reunion Ridge Way. The swale conveys flows northwest, through the site, and discharges into the adjacent Pond T (DP EX1).

Developed runoff from the site will surface drain to proposed storm infrastructure and will discharge into Pond T. Proposed hydrologic calculations are included in Appendix A and a Proposed Drainage Map is included in the Back Pocket of this report.

Proposed sub-basin descriptions:

A-1 (area = 0.66 ac; 5-year runoff = 1.20 cfs; 100-year runoff = 3.60 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP A1. The proposed storm sewer conveys flows to the north and discharges into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the curb to the north, into Pond T.

A-2 (area = 1.08 ac; 5-year runoff = 1.41 cfs; 100-year runoff = 5.19 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP A2. The proposed storm sewer conveys flows to the north and discharges into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the road crown to the west, to the proposed inlet at DP A1.

A-3 (area = 2.49 ac; 5-year runoff = 2.67 cfs; 100-year runoff = 9.63 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP A3. The proposed storm sewer conveys flows to the north and discharges into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will be conveyed by the curb and gutter to the north, into Scranton Street, to the proposed inlet at DP A1.

A-4 (area = 1.00 ac; 5-year runoff = 0.99 cfs; 100-year runoff = 3.69 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP A4. The proposed storm sewer conveys flows to the north and discharges into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the road crown to the north, to the proposed inlet at DP A3.

A-5 (area = 1.28 ac; 5-year runoff = 1.18 cfs; 100-year runoff = 4.45 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R on-grade inlet at DP A5. The proposed storm sewer conveys flows to the north and discharges into Pond T. Any flows bypassing the on-grade inlet will be conveyed north via curb and gutter to the proposed inlet at DP A4.

A-5.1 (area = 2.53 ac; 5-year runoff = 3.43 cfs; 100-year runoff = 10.72 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R on-grade inlet at DP A5.1. The proposed storm sewer conveys flows to the north and discharges into Pond T. Any flows bypassing the on-grade inlet will be conveyed north via curb and gutter to the proposed inlet at DP A2.

A-6 (area = 1.75 ac; 5-year runoff = 3.23 cfs; 100-year runoff = 9.50 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R on-grade inlet at DP A6. The proposed storm sewer conveys flows to the north and discharges into Pond T. Any flows bypassing the on-grade inlet will be conveyed north via curb and gutter to the proposed inlet at DP A5. A-7 (area = 0.26 ac; 5-year runoff = 0.69 cfs; 100-year runoff = 1.82 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R on-grade inlet at DP A7. The proposed storm sewer conveys flows to the north and discharges into Pond T. Any flows bypassing the on-grade inlet will be conveyed north via curb and gutter to the proposed inlet at DP A5.1.

A-8 (area = 0.19 ac; 5-year runoff = 0.61 cfs; 100-year runoff = 1.45 cfs) Consists of lot area and roadway area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R on-grade inlet at DP A8. The proposed storm sewer conveys flows to the north and discharges into Pond T. Any flows bypassing the on-grade inlet will be conveyed north via curb and gutter to the proposed inlet at DP A7.

A-9 (area = 1.66 ac; 5-year runoff = 2.21 cfs; 100-year runoff = 7.35 cfs) Consists of lot area and roadway area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP A9. The proposed storm sewer conveys flows to the north and discharges into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the road crown to the north, to the proposed inlet at DP A8.

A-10 (area = 1.47 ac; 5-year runoff = 0.83 cfs; 100-year runoff = 4.29 cfs) Consists of lot area and landscape area. Runoff flows overland into two proposed swales and is conveyed to a proposed Type C sump inlet at DP A10. The proposed storm sewer conveys flows to the north and discharges into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the swale to the south, and flow off-site into the existing swale adjacent to the southern property line.

B-1 (area = 0.15 ac; 5-year runoff = 0.49 cfs; 100-year runoff = 1.16 cfs) Consists of roadway area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP B1. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP B0), that ultimately releases into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the curb to the north, into Pond T.

B-2 (area = 0.98 ac; 5-year runoff = 1.30 cfs; 100-year runoff = 4.69 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into

the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP B2. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP B0), that ultimately releases into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the road crown to the west, to the proposed inlet at DP B1.

C-1 (area = 1.31 ac; 5-year runoff = 2.11 cfs; 100-year runoff = 6.79 cfs)

Consists of lot area and roadway area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP C1. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP C0), that ultimately releases into

Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will be conveyed by the curb and gutter to the north, into Reunion Ridge Way, to the proposed inlet at DP B2.

C-2 (area = 1.98 ac; 5-year runoff = 2.18 cfs; 100-year runoff = 7.34 cfs) Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP C2. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP C0), that ultimately releases into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the road crown to the west, to the proposed inlet at DP C1.

D-1 (area = 3.60 ac; 5-year runoff = 3.34 cfs; 100-year runoff = 11.06 cfs) Is proposed with Filing No. 3. Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP D1. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP D0), that ultimately releases into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will be conveyed by the curb and gutter to the north, into Reunion Ridge Way, to the proposed inlet at DP C2.

D-2 (area = 1.17 ac; 5-year runoff = 2.14 cfs; 100-year runoff = 6.36 cfs) Is proposed with Filing No. 3. Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R sump inlet at DP D2. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP D0), that ultimately releases into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the road crown to the west, to the proposed inlet at DP D1.

D-3 (area = 1.66 ac; 5-year runoff = 0.70 cfs; 100-year runoff = 3.59 cfs) Is proposed with Filing No. 3. Consists of lot area and landscape area. Runoff flows overland into a proposed swale, and conveyed to a proposed Type C sump inlet at DP D3. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP D0), that ultimately releases into Pond T. In the case of inlet clogging, emergency overflow from the sump inlet will overtop the swale to the west, to the proposed inlet at DP D2.

D-4 (area = 0.63 ac; 5-year runoff = 1.49 cfs; 100-year runoff = 3.98 cfs) Is proposed with Filing No. 3. Consists of lot area and roadway area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R on-grade inlet at DP D4. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP D0), that ultimately releases into Pond T. Any flows bypassing the on-grade inlet will be conveyed north via curb and gutter to the proposed inlet at DP D1.

D-5 (area = 1.50 ac; 5-year runoff = 2.32 cfs; 100-year runoff = 7.52 cfs) Is proposed with Filing No. 3. Consists of lot area, roadway area, and landscape area. Runoff flows overland into the proposed roadway, where it is conveyed to a proposed Type R on-grade inlet at DP D5. The proposed storm sewer conveys flows to the north, and will connect to the existing storm sewer system in Reunion Ridge Way (DP D0), that ultimately releases into Pond T. Any flows bypassing the on-grade inlet will be conveyed north via curb and gutter to the proposed inlet at DP D2.

E-1 (area = 0.37 ac; 5-year runoff = 0.18 cfs; 100-year runoff = 0.98 cfs) Consists of lot area and landscape area. Runoff flows overland to the south, offsite (DP E1).

E-2 (area = 0.49 ac; 5-year runoff = 0.39 cfs; 100-year runoff = 1.87 cfs) Consists of lot area and landscape area. Runoff flows overland to the west, off-site (DP E2).

E-3 (area = 0.15 ac; 5-year runoff = 0.04 cfs; 100-year runoff = 0.61 cfs) Consists of lot area and landscape area. Runoff flows overland to the west, off-site (DP E3).

E-4 (area = 0.38 ac; 5-year runoff = 0.42 cfs; 100-year runoff = 1.80 cfs) Consists of lot area and landscape area. Runoff flows overland to the north, offsite, and into Pond T (DP E4).

OS-1 (area = 36.77 ac; 5-year runoff = 2.76 cfs; 100-year runoff = 42.46 cfs) Consists of off-site undeveloped area. Runoff flows overland to the northeast into an existing swale adjacent to Reunion Ridge Way. The swale conveys flows northwest to the Type C inlet proposed with Filing No. 3 at DP D3. The storm sewer proposed with Filing No. 3 will connect to the existing storm sewer system in Reunion Ridge Way, that ultimately releases into Pond T.

III. DRAINAGE DESIGN CRITERIA

A. Regulations

This Drainage Addendum is in accordance with the guidelines set forth by the Commerce City Drainage Manual and the Mile High Flood District (MHFD) Urban Storm Drainage Criteria Manual (USDCM. These manuals were used as a basis of design for the site.

B. Development Criteria Reference and Constraints

This report conforms to the *Preliminary Drainage Report for Reunion Village* 9 (Master Report), dated May 20, 2020, by JR Engineering, that details the drainage plan for the overall Reunion Village 9 development. Excerpts from the Master Report are included in Appendix C.

The Master Report designates this Filing No. 2 site and the adjacent Filing No. 3 site as included in sub-basin 9A1 of the overall Reunion Village 9 draining to Existing Detention and Water Quality Pond T. The design for Pond T accounts for sub-basin 9A1 at an imperviousness of 56.3 percent. The combined imperviousness for the proposed Filings No. 2 and No. 3 is approximately 53.7 percent; therefore, the site is in conformance with the Master Report and will not adversely impact the downstream infrastructure.

Site constraints that impact the drainage design of the site are the off-site flows entering the site from the south and the existing topography that includes rolling terrain, and the connection points to the existing storm infrastructure.

C. Hydrological Criteria

On-site hydrologic calculations were performed using a proprietary rational method workbook, developed by CORE in Microsoft Excel, to estimate peak overland runoff flows resulting from the minor (5-year) and major (100-year) storm events. The workbook utilizes rainfall data provided the Master Report. Hydrologic calculations are included in Appendix A

D. Hydraulic Criteria

Streets within the proposed development have been classified as local roads and include mountable type curb. This traffic classification corresponds to drainage classification Type A, per the City Criteria. Street and Inlet capacities were determined using the MHFD workbook, UD-Inlet_v4.060xlsm, with values based on the Type A drainage classification and mountable curb type. Hydraulic analysis and stormwater routing of the proposed storm sewer was completed using StormCAD v10.03.01.08 software by Bentley, with junction losses modeled per Table 2 of the supplemental MHFD publication, *Modeling Hydraulic and Energy Gradients in Storm Sewers*, dated October 6, 2009 by AMEC. Hydraulic calculations are included in Appendix B.

IV. DRAINAGE FACILITY DESIGN

A. General Concept

Runoff from the proposed residential development generally surface drains into the proposed Type A roadway mountable curb and gutter. These flows are captured by proposed storm sewer inlets and conveyed northwest to Existing Detention and Water Quality Pond T, adjacent to the site, or conveyed to the existing storm sewer in Reunion Ridge Way prior to discharging into Pond T.

B. Specific Details

The proposed storm sewer system will connect to the existing storm infrastructure of the overall Reunion Village 9 development in two places to the north. The proposed storm sewer serving majority of the site will connect to an existing RCP stub that discharges directly into the existing pond. The proposed storm sewer that serves the remaining eastern portion of the site will connect to an existing stub that connects to the existing storm infrastructure in the Reunion Ridge Way right-of-way prior to discharging into the existing pond. Coordination with other firms will be necessary to ensure these connections are made. The existing and proposed storm sewer infrastructure will be owned and maintained by the Reunion Metropolitan District.

V. CONCLUSIONS

A. Compliance with Standards

This report and associated calculations comply with the City of Commerce City "Storm Drainage Design and Technical Criteria Manual," the Mile High Flood District's "Urban Storm Drainage Criteria Manual," and the "Preliminary Drainage Report for Reunion Village 9" by JR Engineering.

B. Drainage Concept

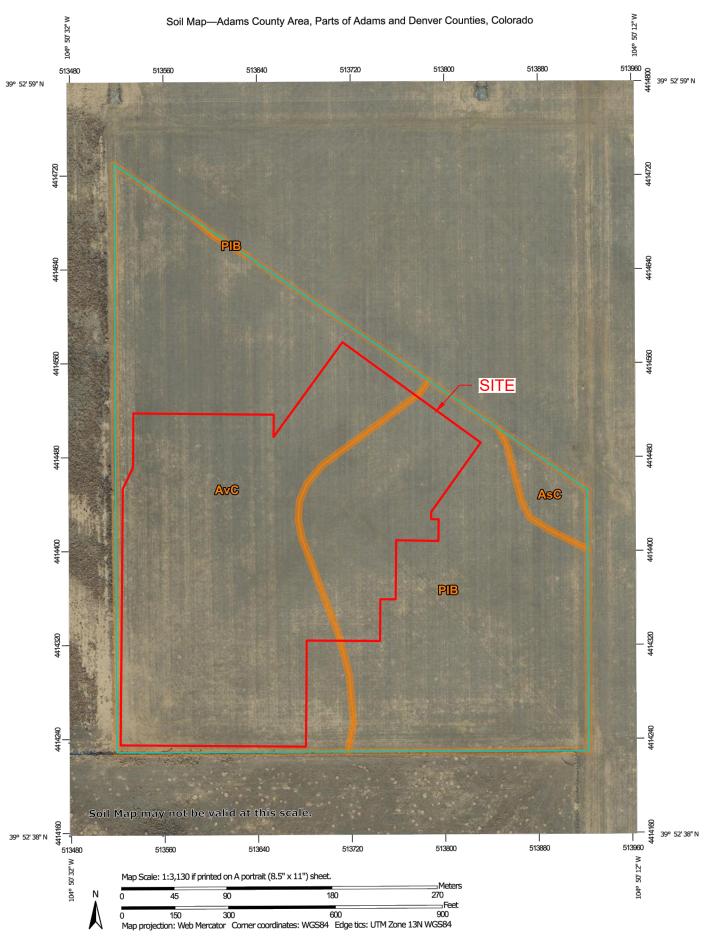
The drainage plan for the overall Reunion Village 9 development is set forth by the Master Report, which designates the maximum allowable imperviousness for this Filing No. 2 site. Developed runoff from the site will be captured by the proposed storm sewer system that will connect to existing storm sewer infrastructure and be conveyed to Existing Detention and Water Quality Pond T, per the Master Report. The imperviousness of the site is less than the maximum allowable; therefore, flows will not adversely impact the downstream infrastructure.

CORE

VI. REFERENCES

- A. City of Commerce City Storm Drainage Design and Technical Criteria Manual, 2021.
- B. <u>Mile High Flood District Urban Storm Drainage Criteria Manual</u>, October 2019.
- C. <u>Modeling Hydraulic and Energy Gradients in Storm Sewers</u>; AMEC Earth & Environmental, Inc., October 6, 2009.
- D. <u>Web Soil Survey</u>, Soil Survey Staff (Natural Resources Conservation Service), United States Department of Agriculture. Available online at the following link: https://websoilsurvey.sc.egov.usda.gov/. Accessed November 20, 2020.
- E. <u>Flood Insurance Rate Map (FIRM) No. 08001C0339H</u>, Federal Emergency Management Agency, Revised March 16, 2016. Available online at the following link: https://msc.fema.gov/portal/home. Accessed November 20, 2020.
- F. Preliminary Drainage Report for Reunion Village 9; JR Engineering, May 20, 2020
- G. Final Drainage Report for Reunion Ridge Filing No. 3; CORE, June 11, 2021

Computer Modeling Programs:

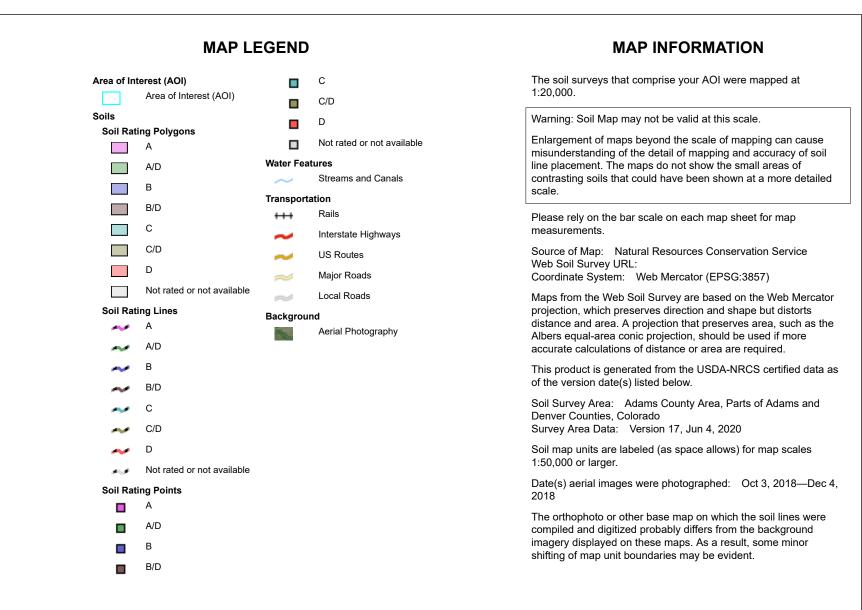

- A. <u>StormCAD</u> by Bentley Systems, Inc., Version 10.03.01.08.
- B. <u>Hydraflow Express Extension for Autodesk Civil 3D</u> by Autodesk, Version 2018.
- C. <u>Detention Basin Design Workbook</u> (MHFD-Detention v4.03.xlsm) by Mile High Flood District, Version 4.03, May 2020.

APPENDIX A

HYDROLOGIC COMPUTATIONS

VICINITY MAP SCALE: 1" = 1000'

Natural Resources Conservation Service


USDA

Web Soil Survey National Cooperative Soil Survey

Natural Resources **Conservation Service**

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group-Adams County Area, Parts of Adams and Denver Counties, Colorado

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AsC	Ascalon sandy loam, 3 to 5 percent slopes	В	0.6	1.7%
AvC	Ascalon-Vona sandy loams, 1 to 5 percent slopes	В	20.2	58.6%
PIB	Platner loam, 0 to 3 percent slopes	С	13.7	39.7%
Totals for Area of Inter	est		34.4	100.0%

Description

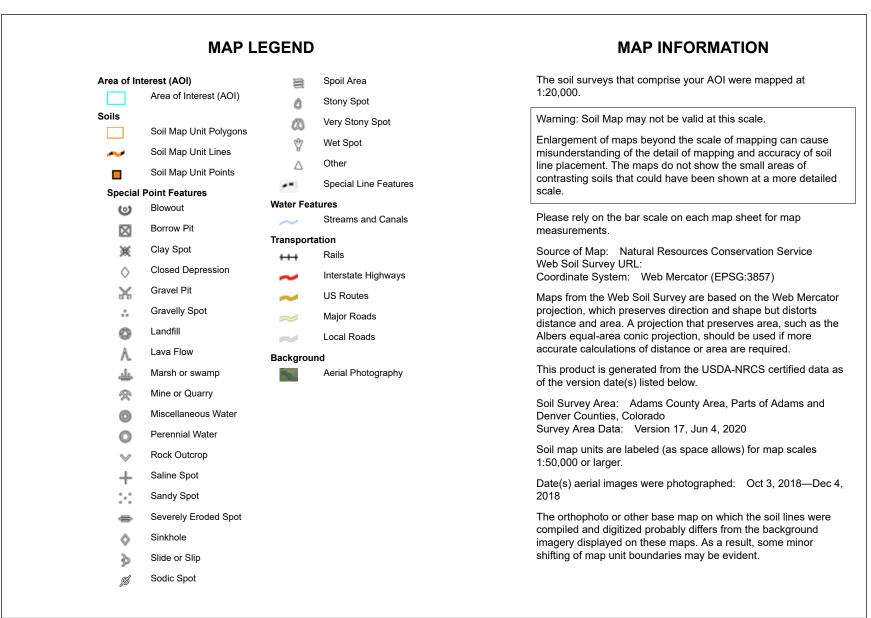
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

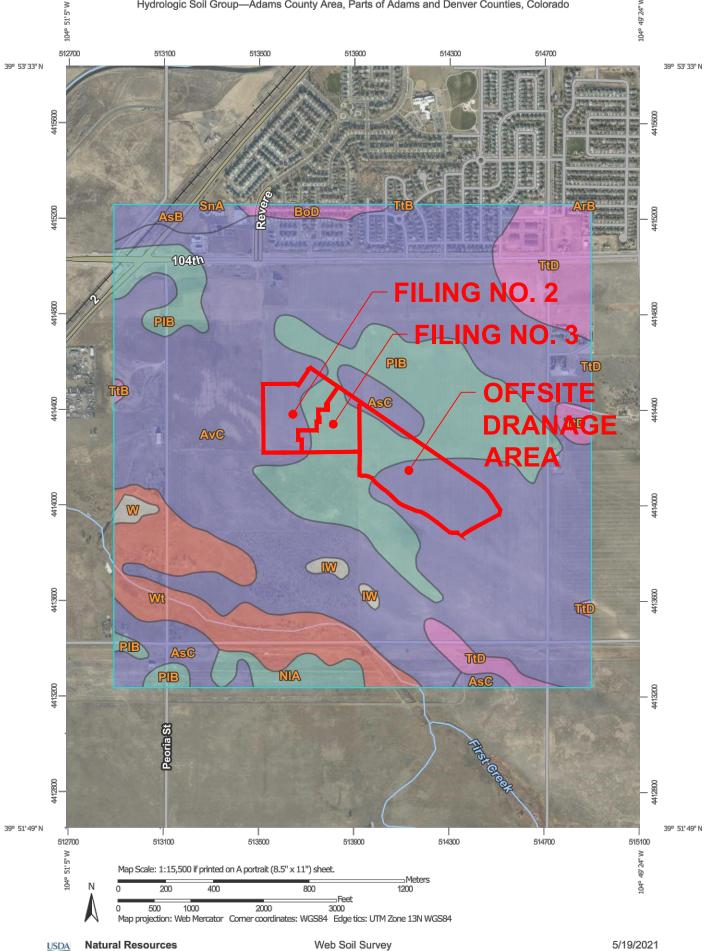

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

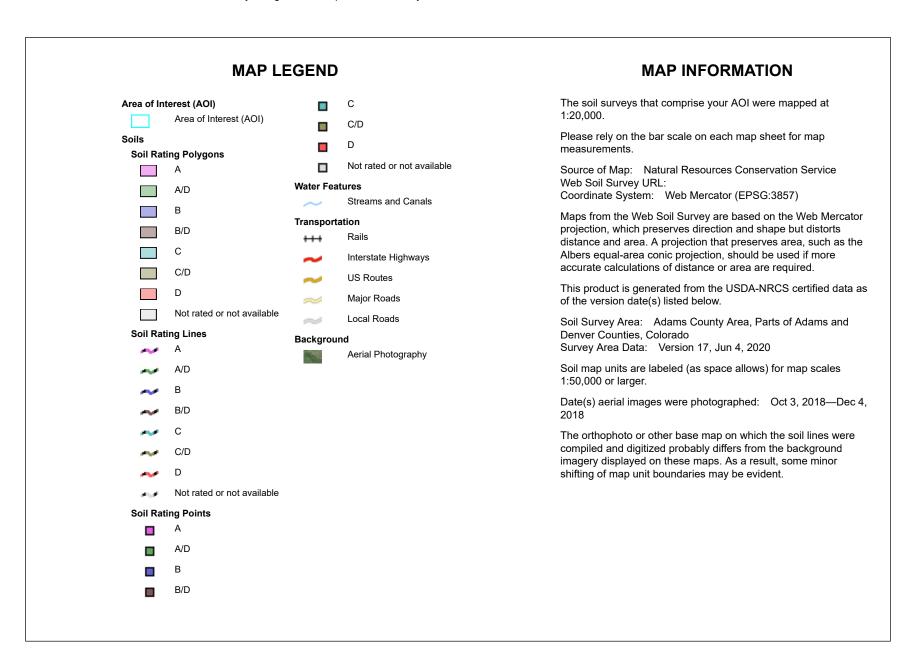
Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Soil Map-Adams County Area, Parts of Adams and Denver Counties, Colorado


Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AsC	Ascalon sandy loam, 3 to 5 percent slopes	0.6	1.7%
AvC	Ascalon-Vona sandy loams, 1 to 5 percent slopes	20.2	58.6%
PIB	Platner loam, 0 to 3 percent slopes	13.7	39.7%
Totals for Area of Interest		34.4	100.0%



Conservation Service

National Cooperative Soil Survey

5/19/2021 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
ArB	Ascalon loamy sand, 0 to 3 percent slopes	В	0.1	0.0%
AsB	Ascalon sandy loam, 0 to 3 percent slopes	В	14.2	1.4%
AsC	Ascalon sandy loam, 3 to 5 percent slopes	В	40.6	4.0%
AvC	Ascalon-Vona sandy loams, 1 to 5 percent slopes	В	599.4	59.5%
BoD	Blakeland loamy sand, 3 to 9 percent slopes	A	7.6	0.8%
IW	Intermittent water		4.1	0.4%
NIA	Nunn loam, 0 to 1 percent slopes	С	16.5	1.6%
PIB	Platner loam, 0 to 3 percent slopes	С	174.0	17.3%
SnA	Satanta loam, 0 to 1 percent slopes	С	0.1	0.0%
TtB	Truckton loamy sand, 0 to 3 percent slopes	A	1.2	0.1%
TtD	Truckton loamy sand, 3 to 9 percent slopes	A	63.3	6.3%
W	Water		3.6	0.4%
Wt	Wet alluvial land	D	81.6	8.1%
Totals for Area of Inter	rest	1	1,006.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administring the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repositiony should be consulted for possible underlad or additional flood heard information.

The state of the second secon

Content lease however here the second second

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways wave based on hydraxilic considerations with regard to requirements of the Mational Rood Insurance Program. Roodway widths and other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient of the partient floodway and the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway data are provided in the Rood Insurance Board other partient floodway are partient floodway

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood insurance Study report for information on flood control structures for the jurisdiction.

The projection used in the properties of this may use Universal Transverse fermions' (TUN) zone 13. The herbanetal dealer wase NADGS, GRS19800 spheroid, Differences in deturn, spheroid, projection or UTM zones used in the production of PRMs for adjournel lutifications may result in sight positional differences in map features across jutification boundaries. These differences do not effect the socursely of this FIRM.

Road elevations on this map are enforced to the block. A monotom Vortical bothm of 1985. These fixed elevations must be sociated to actuative and ground elevations referenced to the same vertical datam. For information regarding conversion between the Michonal Goodbic Vortical Datam of 1929 and the North American Vertical Datam of 1989, wait the Netical Goodbic Survey at the blocking elevative.

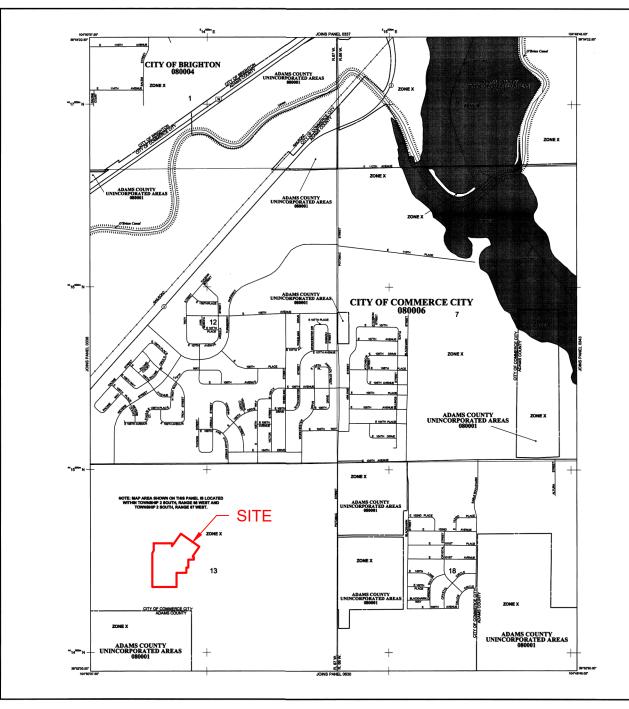
NGS Information Services NOAA, NNOS12 National Geodetic Survey SSMC- 3, #2202 1315 East- West Highway Silver Soring, MD 20910-

To obtain current elevation, description, and/or location information for bench marks shown on this map, pieces contact the information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at bitr/linux reases and

Base map information shown on this FIRM was provided by the Adams County and Commerce City GIS departments. The ocordinate system used for the production of the digital FIRM is Universe Transverse Mercator, Zone 13N, referenced to their Adams Debut of 10R and the OR Bit has not will be the transverse

Noth American learns a more solidiar and up to data scheme channel configurations than how aroun on the product FRM for the justication. The decoplane and bookings that was insultant form the product FRM may have been educated to conform to these new stream channel configurations. As a mask, the Root Infilms and Rooking Ubst tables in the Root Insurance Data's report (mich) contains authoritism lybrauch data) may reflect ateam deared descent bail data for non-stat to score con the root insurance tables report (mich) contains authoritism lybrauch data) may reflect ateam deared descent bail data for non-stat to score co the root product ateam deared.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to encountions or de encountions may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the coords showing the layout of map paratic community map separatory addresses; detes for each community as well as a lating of the panels on which each community is located.

Contact the TEBA Map Benvice Center of - 00.355.616 for information or entitleble produces associated with NH FR34. Associately produce may include previously issued Latient of Map Change, a Flood Instance Study report android optial workson of the may. The TEBA Map Service Center may also be reached by Fex at 1-600-356-8020 and its weakle at http://www.msc.tem.gov/

If you have questions about this map or questions concerning the National Flood insurance Program in general, please cet 1-877-FEMA MAP (1-877-338-2527) or visit the FEMA website at http://www.fema.gov/.

This digited field insurance fillers the (FRM) was produced through a concentrine performing belowing the filler of Colorado Start Convergence Agency (FRM). The State of Colorado Water Convencion. Based, and and Filler Colorado States in Water Convencion. Based and the Usban Danies and Filler Colorado States in Water Convencion. Based and the Usban Danie of Colorado States in Water Convencion. Based and the State of Colorado and the Usban Danies and Hood Concel Dates Lines (Sealed Dates of Colorado and the Usban Danies) and Hood Concel Dates Lines (Sealed State In Cooperstate Technical Informer agreements with FRMA to produce the digital FISH.

Additional flood hazard information and resources are evaluable from local communities, the Colorado Water Conservation Board, and the Litban Drainage and Roud Covernit United.

De 15 aug	INUNDATIO	LOOD HAZARD AREAS (SFHAS) SUBJECT TO IN BY THE 1% ANNUAL CHANCE FLOOD
The 1% annu that has a Rood Hazard of Special R Rood Blevation	Area is the a	(10) year flood), also known as the base flood, is the flood being equals or exceeded in any given year. The Special being equals or exceeded in any given year. The Special being exceeded in the second second second second second reads and the second second second second second second reads and second second second second second second second reads also second
of Special Fi Flood Elevation	bod Hazard I	Include Zones A, AE, AH, AO, AR, A99, V and VE. The Base rface elevation of the 1% annual chance flood. Elevations determined.
ZONE A ZONE AE ZONE AH	No Base Flood Base Flood Eli	Elevations determined. Nations determined.
ZONE AH	Flood death	a of 1 to 3 feet (usually areas of conding); Base Flood
	average dept also determin	iermined. s of 1 to 3 feet (usually sheet flow on sloping termin); is determined. For areas of alluvial fan flooding, velocities d.
ZONE AR	special Floo chance floo decertified. 2	d. d Hazard Area formenty protected from the 1% annual by a food control system that was subsequently one AK indicates that the former flood control system is d to provide protection from the 1% annual chance or d to provide protection from the 1% annual chance or
	greater flood.	d to provide protection from the 1% annual chance or
	flood protect determined.	protected from 1% annual chance flood by a Federal on system under construction; no Base Mood Elevations
ZONE V ZONE VE	Coastal floor Elevations de	zone with velocity hazard (wave action); no Base Plood semined. I zone with velocity hazard (wave action); Base Plood
The flootway		AREAS IN ZONE AE
		of a stream plus any adjacent floodplain areas that must be o that the 1% annual chance flood can be carried without of heights.
	OTHER FLC	OD AREAS
ZONE X	Areas of 0.2 with average 1 square m	OD AREAS 1% annual chance flood; areas of 1% annual chance flood depts of less than 1 floot or with drainage areas less than le; and areas protected by levees from 1% annual chance
_		
ZOME X	OTHER ARE Areas determ	AS ined to be outside the 0.2% ennuel chance floodplein. In flood hazards are undetermined, but possible.
		BARRIER RESOURCES SYSTEM (CBRS) AREAS
	OTHERWIS	E PROTECTED AREAS (OPAs) smally located within or adjacent to Special Flood Hazard Areas.
		Picodpisin boundary
		Floodway boundary Zone D boundary
•••••		CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different
		Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. Base Flood Elevation line and value; elevation in feet*
(EL 9	87)	Base Rood Elevation line and value; elevation in text* Base Flood Elevation value where uniform within zone; elevation in feet*
Referenced to	the North Ame	rican Vertical Datum of 1988 (NAVD 88)
a)	• the North Ame (2) (2)	Cross section line Transect line
arorar 1	@	Transect line Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)
49750	°"N	1000-meter Universal Transverse Mercator grid ticks, zone 13
600000		5000-foot grid ticks: Alabama State Plane coordinate system, east zone (FIPSZOME 0101), Transverse Hercator
DX55	10	Bench mark (see explanation in Notes to Users section of this FIRM panel)
• M1.		this FIRM panel)
•		MAP REPOSITORIES ar to Map Repositories list on Map Index
	Re	
	EFFECT	IFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP August 18, 1985 FE OATE(S) OF REVISION(S) TO THIS PANEL format.
Warch 5, 2007	- to update may	format.
for community	map revision	history prior to countywide mapping, refer to the Community the Rood Insurance Study report for this jurisdiction.
		ance is available in this community, contect your insurance soci insurance Program at 1-800-638-6620.
went of call i	Helonal Pi	ood Insurance Program at 1-800-638-6620.
	250	MAP SCALE 1" = 500' 0 500 1000 FEET 0 150 300 FERS
	150	0 150 300
1	NFIP	PANEL 0339H
	ROGRAM	FIRM
	N.	FLOOD INSURANCE RATE MAP
	9	ADAMS COUNTY,
		COLORADO
		AND INCORPORATED AREAS
	951	
	N	PANEL 339 OF 1150 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)
	NISURANN	CONTAINS
		COMMUNITY NUMBER PANEL SUFFIX
	ISN	BRIGHTON, CITY OF 080004 0339 H
	M	
	ILOC	
	AL FL(Notice to User: The Map Humber shown below should be
	THE REPORT OF THE PARTY OF THE	Notice to User: The Map Humber shown below should be used when placing map orders; the Community Number shown above should be used on insurance applications for the subject community.
	INAN	
	NO	MAP NUMBER 08001C0339H
	NO	MAP NUMBER 08001C0338H MAP REVISED MARCH 5, 2007
	INAVITIONNAL	MAP NUMBER 08001C0339H MAP REVISED MARCH 5, 2007 Federal Emergency Management Agency

 CORE Project #:
 18-004

 Prepared By:
 DJB

COMPOSITE BASIN - PERCENT IMPERVIOUS CALCULATIONS

-REFERENCE UDFCD Vol.1 RUNOFF Table 6-3

			Resid	ential]			Lav	vns						
			Single Family	1	Other				Clay	Soil					Soil Type	
		American Dream	Carriage Home 6 Pack	Home	N/A	Concrete/ Roof	Pavement	Gravel	2-7% Slope	>7% Slope	Historic			Soil Type A Area	Soil Type B Area	Soil Type C Area
% Impei	rv.	60.00%	45.00%	40.00%	45.00%	90.00%	100.00%	40.00%	2.00%	2.00%	2.00%					
BASIN	Design											Total Percent	Percent			
DASIN	Design	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Total		Area	Area	Area
EX-1	EX1	-	-	-	-	-	0.93	-	-	-	27.06	27.98	5.2%	-	13.22	14.77
EX-2	EX2	-	-	-	-	-	-	-	-	-	0.76	0.76	2.0%	-	0.76	-
TOTAL EX		-	-	-	-	-	-	-	-	-	27.82	28.74	1.9%	-	-	-
OS-1	01	-	-	-	-	-	2.32	-	-	-	34.46	36.77	8.2%	-	25.37	11.40

 CORE Project #:
 18-004

 Prepared By:
 DJB

TIME OF CONCENTRATION CALCULATIONS

			0/1200											
-REFERENCI	UDFCD Vol	.1 Sectio	<u>on 2.4</u>		NRCS C	onveyan	<u>ce fact</u>	ors, K -	REFERENCE	UDFCD V	ol.1 RUNO	F Table 6-2		
SF-2	F-2			Heavy M	leadow	2.50	ort Gras	s Pastur	e & Lawns	7.00		Grass	ed Waterway	15.00
				Tilla	ge/field	5.00	Ne	early Ba	re Ground	10.00	Pave	ed Area & S	hallow Gutter	20.00
	SUB-BASIN		INITIAL	/ OVER	LAND	CHANNE	L / TRAV	/el time				T(c)	CHECK	FINAL
	DATA			TIME			T(†)					(URBANI	zed basins)	T(c)
DRAIN	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(†)	COMP.	% IMPER-	USDCM	
BASIN	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	VIOUS	Eq . 6-5	min.
EX-1	27.98	0.06	300	1.5	28.5	1063	0.8	7.0	0.6	29.2	57.7	5.2%	46.1	46.1
EX-2	0.76	0.01	166	2.4	18.9						18.9	2.0%		18.9
OS-1	36.77	0.07	300	2.5	23.8	2225	0.8	7.0	0.6	59.7	83.5	8.2%	65.8	65.8

 CORE Project #:
 18-004

 Prepared By:
 DJB

COMPOSITE DEVELOPED BASIN WEIGHTED "C" CALCULATIONS -REFERENCE UDFCD Vol.1 RUNOFF Table 6-4

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

NRCS				Storm Re	turn Period						
Soil Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year				
А	C _A =	C _A =	C _A =	C _A =	C _A =	C _A =	C _A =				
	0.84 <i>i</i> ^{1.302}	0.86 <i>i</i> ^{1.276}	$0.87i^{1.232}$	0.84 <i>i</i> ^{1.124}	0.85 <i>i</i> +0.025	0.78 <i>i</i> +0.110	0.65 <i>i</i> +0.254				
В	C _B =	C _B =	C _B =	C _B =	C _B =	C _B =	C _B =	Tota	l Weighted Ru	noff Coefficier	nts, C
	0.84 <i>i</i> ^{1.169}	0.86 <i>i</i> ^{1.088}	0.81 <i>i</i> +0.057	0.63 <i>i</i> +0.249	0.56 <i>i</i> +0.328	0.47 <i>i</i> +0.426	0.37 <i>i</i> +0.536	2-Year	5-Year	10-Year	100
C/D	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =				
	0.83 <i>i</i> ^{1.122}	0.82 <i>i</i> +0.035	0.74 <i>i</i> +0.132	0.56 <i>i</i> +0.319	0.49 <i>i</i> +0.393	0.41 <i>i</i> +0.484	0.32 <i>i</i> +0.588	0.04	0.06	0.14	0

100-Year

0.48

i = % imperviousness/100 expressed as a decimal

 $C_{\rm A}$ = Runoff coefficient for NRCS HSG A soils

 C_B = Runoff coefficient for NRCS HSG B soils

 C_{CD} = Runoff coefficient for NRCS HSG C and D soils.

Natural Resource Conservation Service (NRCS)

Basin ID	asin ID % Imperv. i Soil Type Runoff Coefficients, C Basin				Total	Weighted Runoff Coefficients, C							
Basinin	∕₀ imperv.	1	Son type	2-Year	5-Year	10-Year	100-Year	Area	Area	2-Year	5-Year	10-Year	100-Year
			А	0.02	0.02	0.02	0.15						
EX-1	5.2%	0.05	В	0.03	0.03	0.10	0.45	13.22	27.98	0.03	0.06	0.14	0.48
			C or D	0.03	0.08	0.17	0.51	14.77					
			A	0.01	0.01	0.01	0.13						
EX-2	2.0%	0.02	В	0.01	0.01	0.07	0.44	0.76	0.76	0.01	0.01	0.07	0.44
			C or D	0.01	0.05	0.15	0.49						
			А	0.03	0.04	0.04	0.17						
OS-1	8.2%	0.08	В	0.04	0.06	0.12	0.46	25.37	36.77	0.05	0.07	0.14	0.48
			C or D	0.05	0.10	0.19	0.52	11.40					

 CORE Project #:
 18-004

 Prepared By:
 DJB

RATIONAL METHOD PEAK RUNOFF

5-Year STORM Rainfall Depth-Duration-Frequency (1-hr) = 1.12

SF-3

<u>-REFERENCE UDFCD Vol.1 EQ 5-1 & EQ 6-1</u>

BASI	N INFORMA	TON	DIR	ECT RUN	OFF		
DESIGN	DRAIN	AREA	5yr Runoff	T(c)	СхА	I	Q
POINT	BASIN	ac.	COEFF	min		in/hr	cfs
EX1	EX-1	27.98	0.06	46.1	1.61	1.35	2.17
EX2	EX-2	0.76	0.01	18.9	0.01	2.27	0.02
01	OS-1	36.77	0.07	65.8	2.59	1.06	2.76

 CORE Project #:
 18-004

 Prepared By:
 DJB

RATIONAL METHOD PEAK RUNOFF

100-YR STORM

SF-3Rainfall Depth-Duration-Frequency (1-hr) =2.53

-REFERENCE UDFCD Vol.1 EQ 5-1 & EQ 6-1

BA	SIN INFORMAT	DIRECT RUNOFF					
DESIGN	DRAIN	AREA	100YR RUNNOFF	T(c)	СхА	I	Q
POINT	BASIN	ac.	COEFF	min		in/hr	cfs
EX1	EX-1	27.983	0.480	46.089	13.420	3.043	40.84
EX2	EX-2	0.76	0.44	18.93	0.332	5.121	1.70
01	OS-1	36.77	0.48	65.83	17.683	2.401	42.46

RUNC	RUNOFF SUMMARY TABLE - EXISTING									
DIRECT RUNOFF										
			5-Year	100-Year						
DESIGN	DESIGN AREA RUNOFF RUNOFF									
POINT	BASIN	(AC)	(CFS)	(CFS)						
EXI	EX-I	27.98	2.17	40.84						
EX2	EX-2	0.76	0.02	1.70						
01	OS-I	36.77	2.76	42.46						

Reunion Ridge Filing No. 2 - Hydrologic Calculations - Proposed

CORE Project #: <u>18-004</u>

Prepared By: DJB

COMPOSITE BASIN - PERCENT IMPERVIOUS CALCULATIONS

-REFERENCE UDFCD Vol.1 RUNOFF Table 6-3

			Resid]			Lav	wns								
		Single Family			Other				Clay Soil						Soil Type	
		American Dream	Carriage Home 6 Pack	Home	Portch Light	Concrete/ Roof	Pavement	Gravel	2-7% Slope	>7% Slope	Historic			Soil Type A Area	Soil Type B Area	Soil Type C Area
% Imper	ν.	60.00%	45.00%	40.00%	40.00%	90.00%	100.00%	40.00%	2.00%	2.00%	2.00%					
BASIN	Design												Percent		_	
BASIN	Design	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Total	reiceili	Area	Area	Area
A-1	A1	0.53	-	-	-	-	0.12	-	0.00	-	-	0.66	67.6%	-	0.66	-
A-2	A2	-	-	-	0.91	-	0.16	-	0.01	-	-	1.08	48.3%	-	0.65	0.43
A-3	A3	0.56	-	1.02	-	-	0.53	-	0.38	-	-	2.49	51.5%	-	2.49	-
A-4	A4	-	-	-	-	-	0.49	-	0.52	-	-	1.00	49.4%	-	1.00	-
A-5	A5	0.75	-	-	-	-	0.17	-	0.37	-	-	1.28	48.6%	-	1.28	-
A-5.1	A5.1	1.23	-	-	0.79	-	0.52	-	0.00	-	-	2.53	61.9%	-	1.27	1.27
A-6	A6	1.38	-	-	-	-	0.37	-	-	-	-	1.75	68.4%	-	1.05	0.70
A-7	A7	0.12	-	-	-	-	0.14	-	-	-	-	0.26	80.9%	-	-	0.26
A-8	A8	0.01	-	-	-	-	0.18	-	-	-	-	0.19	98.5%	-	0.11	0.08
A-9	A9	-	-	1.18	-	-	0.48	-	0.00	-	-	1.66	57.3%	-	1.50	0.17
A-10	A10	-	-	1.06	-	-	-	-	0.41	-	-	1.47	29.3%	-	0.51	0.95
SUBTOTAL A		4.58	-	3.25	1.70	-	3.15	-	1.70	-	-	14.37	55.0%	-	-	-
B-1	B1	-	_	_	<u> </u>		0.15		_	_	_	0.15	100.0%	-	0.15	-
B-1 B-2	B1 B2	-	-	-	0.53		0.13	-	0.16	-	-	0.13	51.7%	-	0.13	0.05
SUBTOTAL B	DZ	-	-	-	0.53 0.53	-	0.27	-	0.18	-	-	1.13	58.2%	-	1.13	-
	1	1	<u>i</u>	1	1	<u>I</u>			1	<u>i</u>			1	1		<u> </u>
C-1	C1	-	-	-	0.94	-	0.37	-	-	-	-	1.31	57.1%	-	-	1.31
C-2	C2	-	-	1.25	-	-	0.54	-	0.18	-	-	1.98	53.1%	-	-	1.98
SUBTOTAL C		-	-	1.25	0.94	-	0.92	-	0.18	-	-	3.29	54.7%	-	3.29	-

10/14/2021

			Resid		Lawns											
		Single Family			Other				Clay Soil						Soil Type	
		American Dream	Carriage Home 6 Pack	Home	Portch Light	Concrete/ Roof	Pavement	Gravel	2-7% Slope	>7% Slope	Historic			Soil Type A Area	Soil Type B Area	Soil Type C Area
% Impe	rv.	60.00%	45.00%	40.00%	40.00%	90.00%	100.00%	40.00%	2.00%	2.00%	2.00%					
BASIN	Design												Percent			
DAJIN	Design	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Total	reiceili	Area	Area	Area
D-1	D1	1.12	0.69	0.72	-	-	0.69	-	0.38	-	-	3.60	54.6%	-	-	3.60
D-2	D2	-	-	0.49	-	-	0.57	-	0.11	-	-	1.17	65.7%	-	0.02	1.14
D-3	D3	-	1.03	-	-	-	-	-	0.63	-	-	1.66	28.8%	-	0.33	1.33
D-4	D4	0.33	-	-	-	-	0.31	-	-	-	-	0.63	79.4%	-	-	0.63
D-5	D5	-	0.66	0.45	-	-	0.37	-	0.02	-	-	1.50	56.4%	-	-	1.50
SUBTOTAL D		1.44	2.39	1.66	-	-	1.93	-	1.14	-	-	8.56	53.3%	-	8.56	-
	-		_		-								-	-	-	
E-1	E1	-	-	0.27	-	-	-	-	0.10	-	-	0.37	29.6%	-	0.37	-
E-2	E2	-	-	0.43	-	-	-	-	0.06	-	-	0.49	35.3%	-	0.49	-
E-3	E3	0.02	-	-	-	-	-	-	0.13	-	-	0.15	11.0%	-	0.15	-
E-4	E4	0.25	-	-	-	-	-	-	0.13	-	-	0.38	40.5%	-	0.38	-
SUBTOTAL E		0.27	-	0.70	-	-	-	-	0.42	-	-	1.39	32.6%	-	-	-
TOTAL SITE		6.29	2.39	6.86	3.16	-	6.44	-	3.59	-	-	28.74	53.5%	-	-	-
OS-1	01	_	_	_	-	-	2.32	_	_		34.46	36.77	8.2%	-	25.37	11.40

Reunion Ridge Filing No. 2 - Hydrologic Calculations - Proposed

 CORE Project #:
 18-004

 Prepared By:
 DJB

TIME OF CONCENTRATION CALCULATIONS

-REFERENCE	UDFCD Vol.	1 Section	<u>1 2.4</u>		NRCS C	onveyand	ce facto	ors, K -R	EFERENCE L	UDFCD Vo	I.1 RUNOFF	<u> Table 6-2</u>		
SF-2				Heavy M	Neadow	2.50	ort Gra	iss Pastui	re & Lawns	7.00		Gras	sed Waterway	15.00
			Tillo	ige/field	5.00 Nearly Bare Ground				10.00	Paved Area & Shallow Gutter			20.00	
	sub-basin		INITIAI	_ / OVER	LAND	CHANNEL / TRAVEL TIME					T(c) CHECK			FINAL
		TIME			T(†)				(URBANIZED BASINS)			T(C)		
DRAIN	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(†)	COMP.	% IMPER-	USDCM	
BASIN	ac.		ft.	%	min	ft.	%		fps	min.	T(c)		Eq . 6-5	min.
A-1	0.66	0.56	40	2.8	4.4	413	0.9	20.0	1.8	3.7	8.1	67.6%	18.6	8.1
A-2	1.08	0.41	70	3.4	7.0	195	1.0	20.0	2.0	1.6	8.6	48.3%	19.8	8.6
A-3	2.49	0.42	90	2.0	9.3	755	1.3	20.0	2.3	5.5	14.8	51.5%	24.0	14.8
A-4	1.00	0.40	275	2.3	15.9						15.9	49.4%		15.9
A-5	1.28	0.39	285	1.9	17.6						17.6	48.6%		17.6
A-5.1	2.53	0.53	65	1.0	8.4	711	0.9	20.0	1.9	6.2	14.6	61.9%	22.6	14.6
A-6	1.75	0.58	26	1.5	4.2	547	1.0	20.0	2.0	4.5	8.7	68.4%	19.3	8.7
A-7	0.26	0.70	25	1.9	3.0	190	0.9	20.0	1.9	1.6	4.6	80.9%	13.9	5.0
A-8	0.19	0.84	22	1.5	1.9	280	0.9	20.0	1.9	2.5	4.4	98.5%	11.4	5.0
A-9	1.66	0.47	80	2.0	8.1	450	0.9	20.0	1.9	4.0	12.0	57.3%	20.9	12.0
A-10	1.47	0.26	50	6.2	5.9	450	0.6	7.0	0.5	14.3	20.2	29.3%	28.7	20.2
B-1	0.15	0.86	20	1.8	1.6	141	1.6	20.0	2.5	0.9	2.5	100.0%	9.8	5.0
B-2	0.98	0.42	30	1.1	6.5	270	0.8	20.0	1.8	2.6	9.1	51.7%	20.3	9.1
C-1	1.31	0.50	30	1.5	5.2	480	1.3	20.0	2.2	3.6	8.7	57.1%	20.5	8.7
C-2	1.98	0.47	171	1.0	15.1	350	1.2	20.0	2.2	2.6	17.8	53.1%	20.2	17.8
D-1	3.60	0.48	245	0.9	18.1	650	0.5	20.0	1.4	7.7	25.7	54.6%	25.9	25.7
D-2	1.17	0.57	78	2.2	6.5	310	1.5	20.0	2.4	2.1	8.6	65.7%	17.2	8.6
D-3	1.66	0.26	126	3.5	11.2	744	0.5	7.0	0.5	25.0	36.2	28.8%	34.5	34.5
D-4	0.63	0.69	25	1.5	3.3	470	1.1	20.0	2.1	3.8	7.1	79.4%	16.3	7.1
D-5	1.50	0.50	25	1.5	4.8	540	0.9	20.0	1.9	4.7	9.4	56.4%	21.9	9.4
E-1	0.37	0.23	50	0.3	16.6	275	1.3	7.0	0.8	5.7	22.3	29.6%	24.0	22.3
E-2	0.49	0.28	121	2.8	11.6						11.6	35.3%		11.6
E-3	0.15	0.08	65	25.0	5.1						5.1	11.0%		5.1
E-4	0.38	0.32	70	4.6	7.1						7.1	40.5%		7.1
OS-1	36.77	0.07	300	2.5	23.8	2225	0.8	7.0	0.6	59.7	83.5	8.2%	65.8	65.8

Reunion Ridge Filing No. 2 - Hydrologic Calculations - Proposed

CORE Project #: <u>18-004</u> Prepared By: <u>DJB</u>

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

					1		ent equilibrio i o	onsee on renees	, son Broab un		a perioa				
		BASIN		NRCS Soil	2-Year	5-Year	10-Year	Storm Ret 25-Year	turn Period 50-Year	100-Year	500-Year				
	C" CALCULA			Group A	C _A =	C _A =	C _A =	C _A =	C _A =	C _A =	C _A =				
	DFCD Vol.1 RUN		-4	A	0.84 <i>i</i> ^{1.302}	0.86 <i>i</i> ^{1.276}	0.87 <i>i</i> ^{1.232}	$0.84i^{1.124}$	0.85 <i>i</i> +0.025	0.78 <i>i</i> +0.110					
KEI EKEINCE OE			<u>+</u>		C _B =	C _B =	C _B =	C _B =	C _B =	C _B =	$C_{\rm B} =$				
i = % imperviou	sness/100 expres	sed as a deci	mal	В	0.84 <i>i</i> ^{1.169}	0.86 <i>i</i> ^{1.088}	0.81 <i>i</i> +0.057	0.63 <i>i</i> +0.249	0.56 <i>i</i> +0.328	С _в – 0.47 <i>i</i> +0.426		Tota	l Weighted Ru	noff Coefficier	ite C
•	fficient for NRCS		mai									2-Year	5-Year	10-Year	100-Yea
	fficient for NRCS			C/D	$C_{C/D}=$ 0.83 <i>i</i> ^{1.122}	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	$C_{C/D} =$	C _{C/D} =	2-160	5-160	10-1601	100-160
b	efficient for NRC		D soils		0.831	0.82 <i>i</i> +0.035	0.74 <i>i</i> +0.132	0.56 <i>i</i> +0.319	0.49i+0.393	0.41 <i>i</i> +0.484	0.32i+0.588	0.24	0.27	0.34	0.59
	e Conservation S											0.24	0.27	0.04	0.07
						Runoff Co	efficients,	C	Bas	in	Total	W	l leighted Runo	ff Coefficients,	C
Basin ID	% Imperv.	i	Soil Typ	e –	2-Year	5-Year	10-Year	 100-Yea			Area	2-Year	5-Year	10-Year	100-Yea
			A		0.50	0.52	0.54	0.64		-					
A-1	67.6%	0.68	В		0.53	0.56	0.60	0.74	0.6	6	0.66	0.53	0.56	0.60	0.74
			C or D		0.53	0.59	0.63	0.76		-					
			Α		0.33	0.34	0.36	0.49							
A-2	48.3%	0.48	В		0.36	0.39	0.45	0.65	0.6	5	1.08	0.36	0.41	0.46	0.66
			C or D		0.37	0.43	0.49	0.68	0.4	3					
			A		0.35	0.37	0.38	0.51							
A-3	51.5%	0.52	В		0.39	0.42	0.47	0.67	2.4	9	2.49	0.39	0.42	0.47	0.67
			C or D		0.39	0.46	0.51	0.70							
			А		0.34	0.35	0.36	0.50							
A-4	49.4%	0.49	В		0.37	0.40	0.46	0.66	1.0	С	1.00	0.37	0.40	0.46	0.66
			C or D		0.38	0.44	0.50	0.69							
			Α		0.33	0.34	0.36	0.49							
A-5	48.6%	0.49	В		0.36	0.39	0.45	0.65	1.2	8	1.28	0.36	0.39	0.45	0.65
			C or D		0.37	0.43	0.49	0.68							
			A		0.45	0.47	0.48	0.59							
A-5.1	61.9%	0.62	В		0.48	0.51	0.56	0.72	1.2	7	2.53	0.48	0.53	0.57	0.73
			C or D		0.48	0.54	0.59	0.74	1.2	7					
			А		0.51	0.53	0.54	0.64		1					
A-6	68.4%	0.68	В		0.54	0.57	0.61	0.75	1.0	5	1.75	0.54	0.58	0.62	0.75
			C or D		0.54	0.60	0.64	0.76	0.7	С					

Basin ID	% Imperv.	i	Soil Type	F	Runoff Co	oefficients,	С	Basin	Total	w N	eighted Runo	ff Coefficients,	С
Basin ID	% imperv.	Ι	soii type	2-Year	5-Year	10-Year	100-Year	Area	Area	2-Year	5-Year	10-Year	100-Year
			А	0.64	0.66	0.67	0.74						
A-7	80.9%	0.81	В	0.66	0.68	0.71	0.81		0.26	0.65	0.70	0.73	0.82
			C or D	0.65	0.70	0.73	0.82	0.26					
			A	0.82	0.84	0.85	0.88						
A-8	98.5%	0.98	В	0.83	0.85	0.85	0.89	0.11	0.19	0.82	0.84	0.86	0.89
			C or D	0.82	0.84	0.86	0.89	0.08					
			A	0.41	0.42	0.44	0.56						
A-9	57.3%	0.57	В	0.44	0.47	0.52	0.70	1.50	1.66	0.44	0.47	0.52	0.70
			C or D	0.44	0.51	0.56	0.72	0.17					
			A	0.17	0.18	0.19	0.34						
A-10	29.3%	0.29	В	0.20	0.23	0.29	0.56	0.51	1.47	0.21	0.26	0.33	0.59
			C or D	0.21	0.28	0.35	0.60	0.95					
			A	0.84	0.86	0.87	0.89						
B-1	100.0%	1.00	В	0.84	0.86	0.87	0.90	0.15	0.15	0.84	0.86	0.87	0.90
			C or D	0.83	0.86	0.87	0.89						
			A	0.36	0.37	0.39	0.51						
B-2	51.7%	0.52	В	0.39	0.42	0.48	0.67	0.93	0.98	0.39	0.42	0.48	0.67
			C or D	0.40	0.46	0.51	0.70	0.05					
			A	0.40	0.42	0.44	0.56						
C-1	57.1%	0.57	В	0.44	0.47	0.52	0.69		1.31	0.44	0.50	0.55	0.72
			C or D	0.44	0.50	0.55	0.72	1.31					
			А	0.37	0.38	0.40	0.52						
C-2	53.1%	0.53	В	0.40	0.43	0.49	0.68		1.98	0.41	0.47	0.52	0.70
			C or D	0.41	0.47	0.52	0.70	1.98					
			А	0.38	0.40	0.41	0.54						
D-1	54.6%	0.55	В	0.41	0.45	0.50	0.68		3.60	0.42	0.48	0.54	0.71
			C or D	0.42	0.48	0.54	0.71	3.60					
			А	0.49	0.50	0.52	0.62						
D-2	65.7%	0.66	В	0.51	0.54	0.59	0.73	0.02	1.17	0.52	0.57	0.62	0.75
			C or D	0.52	0.57	0.62	0.75	1.14					
			А	0.17	0.18	0.19	0.33						
D-3	28.8%	0.29	В	0.20	0.22	0.29	0.56	0.33	1.66	0.20	0.26	0.33	0.59
			C or D	0.21	0.27	0.34	0.60	1.33					

Basin ID	% Imperv.	;	Soil Type	F	Runoff Co	efficients,	С	Basin	Total	W	eighted Runo	ff Coefficients,	С
Basin ID	% imperv.	I	son type	2-Year	5-Year	10-Year	100-Year	Area	Area	2-Year	5-Year	10-Year	100-Year
			A	0.62	0.64	0.65	0.73						
D-4	79.4%	0.79	В	0.64	0.67	0.70	0.80		0.63	0.64	0.69	0.72	0.81
			C or D	0.64	0.69	0.72	0.81	0.63					
			A	0.40	0.41	0.43	0.55						
D-5	56.4%	0.56	В	0.43	0.46	0.51	0.69		1.50	0.44	0.50	0.55	0.72
			C or D	0.44	0.50	0.55	0.72	1.50					
			A	0.17	0.18	0.19	0.34						
E-1	29.6%	0.30	В	0.20	0.23	0.30	0.56	0.37	0.37	0.20	0.23	0.30	0.56
			C or D	0.21	0.28	0.35	0.61						
			А	0.22	0.23	0.24	0.39						
E-2	35.3%	0.35	В	0.25	0.28	0.34	0.59	0.49	0.49	0.25	0.28	0.34	0.59
			C or D	0.26	0.32	0.39	0.63						
			А	0.05	0.05	0.06	0.20						
E-3	11.0%	0.11	В	0.06	0.08	0.15	0.48	0.15	0.15	0.06	0.08	0.15	0.48
			C or D	0.07	0.13	0.21	0.53						
			А	0.26	0.27	0.29	0.43						
E-4	40.5%	0.41	В	0.29	0.32	0.39	0.62	0.38	0.38	0.29	0.32	0.39	0.62
			C or D	0.30	0.37	0.43	0.65						
			А	0.03	0.04	0.04	0.17						
OS-1	8.2%	0.08	В	0.04	0.06	0.12	0.46	25.37	36.77	0.05	0.07	0.14	0.48
			C or D	0.05	0.10	0.19	0.52	11.40					

Reunion Ridge Filing No. 2 - Hydrologic Calculations - Proposed

 CORE Project #:
 18-004

 Prepared By:
 DJB

RATIONAL METHOD PEAK RUNOFF

5-Year STORM Rainfall Depth-Duration-Frequency (1-hr) = 1.12

SF-3

-REFERENCE UDFCD Vol.1 EQ 5-1 & EQ 6-1

BASI	N INFORMA	TON		DIR	ECT RUN	OFF	
DESIGN	DRAIN	AREA	5yr Runoff	T(c)	СхА	I	Q
POINT	BASIN	ac.	COEFF	min		in/hr	cfs
A1	A-1	0.66	0.56	8.1	0.37	3.28	1.20
A2	A-2	1.08	0.41	8.6	0.44	3.21	1.41
A3	A-3	2.49	0.42	14.8	1.04	2.56	2.67
A4	A-4	1.00	0.40	15.9	0.40	2.47	0.99
A5	A-5	1.28	0.39	17.6	0.50	2.35	1.18
A5.1	A-5.1	2.53	0.53	14.6	1.33	2.58	3.43
A6	A-6	1.75	0.58	8.7	1.01	3.19	3.23
A7	A-7	0.26	0.70	5.0	0.18	3.80	0.69
A8	A-8	0.19	0.84	5.0	0.16	3.80	0.61
A9	A-9	1.66	0.47	12.0	0.79	2.81	2.21
A10	A-10	1.47	0.26	20.2	0.38	2.19	0.83
B1	B-1	0.15	0.86	5.0	0.13	3.80	0.49
B2	B-2	0.98	0.42	9.1	0.41	3.15	1.30
C1	C-1	1.31	0.50	8.7	0.66	3.19	2.11
C2	C-2	1.98	0.47	17.8	0.93	2.34	2.18
D1	D-1	3.60	0.48	25.7	1.74	1.92	3.34
D2	D-2	1.17	0.57	8.6	0.67	3.21	2.14
D3	D-3	1.66	0.26	34.5	0.43	1.62	0.70
D4	D-4	0.63	0.69	7.1	0.44	3.43	1.49
D5	D-5	1.50	0.50	9.4	0.75	3.10	2.32
E1	E-1	0.37	0.23	22.3	0.08	2.08	0.2
E2	E-2	0.49	0.28	11.6	0.14	2.85	0.4
E3	E-3	0.15	0.08	5.1	0.01	3.77	0.0
E4	E-4	0.38	0.32	7.1	0.12	3.43	0.4
01	OS-1	36.77	0.07	65.8	2.59	1.06	2.8

Reunion Ridge Filing No. 2 - Hydrologic Calculations - Proposed

 CORE Project #:
 18-004

 Prepared By:
 DJB

RATIONAL METHOD PEAK RUNOFF

100-YR STORM

 SF-3
 Rainfall Depth-Duration-Frequency (1-hr) =
 2.53

 -REFERENCE UDFCD Vol.1 EQ 5-1 & EQ 6-1
 2.53

BA	SIN INFORMAT	ON		DIR	ECT RUN	OFF	
DESIGN	DRAIN	AREA	100YR RUNNOFF	T(C)	СхА	I	Q
POINT	BASIN	ac.	COEFF	min		in/hr	cfs
A1	A-1	0.655	0.744	8.111	0.487	7.400	3.60
A2	A-2	1.08	0.66	8.60	0.717	7.247	5.19
A3	A-3	2.49	0.67	14.76	1.664	5.787	9.63
A4	A-4	1.00	0.66	15.94	0.661	5.579	3.69
A5	A-5	1.28	0.65	17.60	0.837	5.314	4.45
A5.1	A-5.1	2.53	0.73	14.60	1.842	5.817	10.72
A6	A-6	1.75	0.75	8.74	1.318	7.204	9.50
A7	A-7	0.26	0.82	5.00	0.212	8.581	1.82
A8	A-8	0.19	0.89	5.00	0.169	8.581	1.45
A9	A-9	1.66	0.70	12.03	1.159	6.343	7.35
A10	A-10	1.47	0.59	20.20	0.867	4.950	4.29
B1	B-1	0.15	0.90	5.00	0.135	8.581	1.16
B2	B-2	0.98	0.67	9.05	0.659	7.111	4.69
C1	C-1	1.31	0.72	8.74	0.943	7.203	6.79
C2	C-2	1.98	0.70	17.77	1.387	5.288	7.34
D1	D-1	3.60	0.71	25.72	2.55	4.34	11.06
D2	D-2	1.17	0.75	8.62	0.88	7.24	6.36
D3	D-3	1.66	0.59	34.52	0.98	3.65	3.59
D4	D-4	0.63	0.81	7.07	0.51	7.75	3.98
D5	D-5	1.50	0.72	9.43	1.07	7.00	7.52
E1	E-1	0.37	0.56	22.30	0.21	4.70	0.98
E2	E-2	0.49	0.59	11.64	0.29	6.43	1.87
E3	E-3	0.15	0.48	5.14	0.07	8.52	0.61
E4	E-4	0.38	0.62	7.10	0.23	7.74	1.80
01	OS-1	36.77	0.48	65.83	17.68	2.40	42.46

RUNO	RUNOFF SUMMARY TABLE - PROPOSED									
	DI		UNOFF							
			5-Year	100-Year						
DESIGN		AREA	RUNOFF	RUNOFF						
POINT	BASIN	(AC)	(CFS)	(CFS)						
AI	A-I	0.66	1.20	3.60						
A2	A-2	1.08	1.41	5.19						
A3	A-3	2.49	2.67	9.63						
A4	A-4	1.00	0.99	3.69						
A5	A-5	1.28	1.18	4.45						
A5.1	A-5.1	2.53	3.43	10.72						
A6	A-6	1.75	3.23	9.50						
A7	A-7	0.26	0.69	1.82						
A8	A-8	0.19	0.61	1.45						
A9	A-9	1.66	2.21	7.35						
A10	A-10	I.47	0.83	4.29						
BI	B-I	0.15	0.49	1.16						
B2	B-2	0.98	1.30	4.69						
CI	C-I	1.31	2.11	6.79						
C2	C-2	1.98	2.18	7.34						
DI	D-I	3.60	3.34	11.06						
D2	D-2	1.17	2.14	6.36						
D3	D-3	1.66	0.70	3.59						
D4	D-4	0.63	1.49	3.98						
D5	D-5	1.50	2.32	7.52						
EI	E-I	0.37	0.18	0.98						
E2	E-2	0.49	0.39	I.87						
E3	E-3	0.15	0.04	0.61						
E4	E-4	0.38	0.42	1.80						
01	OS-I	36.77	2.76	42.46						

APPENDIX B

HYDRAULIC COMPUTATIONS

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet A1	Inlet A2	Inlet A3	Inlet A4	Inlet A5	Inlet A5.1
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump	In Sump	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening					

USER-DEFINED INPUT

ser-Defined Design Flows						
/linor Q _{Known} (cfs)	1.2	1.4	2.7	1.0	1.2	3.4
/ajor Q _{Known} (cfs)	3.6	5.2	9.6	3.7	4.5	10.7
Sypass (Carry-Over) Flow from Upstream						
Receive Bypass Flow from:	No Bypass Flow Received	Inlet A5.1	No Bypass Flow Received	Inlet A5	Inlet A6	Inlet A7
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.7	0.0
lajor Bypass Flow Received, Q _b (cfs)	0.0	2.7	0.0	2.2	5.4	0.1
			· ·	· · · · · ·	·	
Vatershed Characteristics						
Subcatchment Area (acres)						
Percent Impervious						
IRCS Soil Type						
51						
Natershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
<u> Ainor Storm Rainfall Input</u>						
Design Storm Return Period, T _r (years)						
Dne-Hour Precipitation, P_1 (inches)						
Major Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
Dne-Hour Precipitation, P_1 (inches)						
$r_1 = r_1 = r_2 = r_1 = r_1 = r_2$						

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	1.2	1.4	2.7	1.0	1.9	3.4
lajor Total Design Peak Flow, Q (cfs)	3.6	7.9	9.6	5.9	9.9	10.8
inor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	N/A	0.0	0.0
lajor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	N/A	2.2	2.7
linor Storm (Calculated) Analysis of Flow Time		N1/A	N1/A	NI/A	N1/A	N1/A
Inor Storm (Calculated) Analysis of Flow Time	<u>N/A</u>	N/A	N/A	N/A	N/A	N/A
linor Storm (Calculated) Analysis of Flow Time		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A

С	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
T _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q _p	N/A	N/A	N/A	N/A	N/A	N/A

Major Storm (Calculated) Analysis of Flow T	<u>ime</u>
C		

C	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
alculated Local Peak Flow, Q _p	N/A	N/A	N/A	N/A	N/A	N/A

INLET MANAGEMENT

Worksheet Protected

	Inlet A6	Inlet A7	Inlet A8	Inlet A9	Inlet B1	Inlet B2
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade	In Sump	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening					

USER-DEFINED INPUT

User-Defined Design Flows						
linor Q _{Known} (cfs)	3.2	0.7	0.6	2.2	0.5	1.3
lajor Q _{Known} (cfs)	9.5	1.8	1.5	7.3	1.2	4.7
Sypass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	Inlet A8	No Bypass Flow Received			
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Aajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
	-					
Vatershed Characteristics						
Subcatchment Area (acres)						
Percent Impervious						
IRCS Soil Type						
Vatershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
channel Slope (ft/ft)						
channel Length (ft)						
<u>linor Storm Rainfall Input</u>						
esign Storm Return Period, T _r (years)						
Dne-Hour Precipitation, P_1 (inches)						
				-		-
lajor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						
Dne-Hour Precipitation, P ₁ (inches)						

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	3.2	0.7	0.6	2.2	0.5	1.3
Major Total Design Peak Flow, Q (cfs)	9.5	1.8	1.5	7.3	1.2	4.7
Minor Flow Bypassed Downstream, Q _b (cfs)	0.7	0.0	0.0	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	5.4	0.1	0.0	N/A	N/A	N/A

Minor Storm (Calculated) Analysis of Flow T

С	N/A	N/A	N/A	
C ₅	N/A	N/A	N/A	
Overland Flow Velocity, Vi	N/A	N/A	N/A	
Channel Flow Velocity, Vt	N/A	N/A	N/A	
Overland Flow Time, Ti	N/A	N/A	N/A	
Channel Travel Time, Tt	N/A	N/A	N/A	
Calculated Time of Concentration, T _c	N/A	N/A	N/A	
Regional T _c	N/A	N/A	N/A	
Recommended T _c	N/A	N/A	N/A	
T _c selected by User	N/A	N/A	N/A	
Design Rainfall Intensity, I	N/A	N/A	N/A	
Calculated Local Peak Flow, Q _p	N/A	N/A	N/A	

Major Storm (Calculated) Analysis of Flow Ti

major otorini (ourounatou) / maryoro or ritori				
С	N/A	N/A	N/A	
C ₅	N/A	N/A	N/A	
Overland Flow Velocity, Vi	N/A	N/A	N/A	
Channel Flow Velocity, Vt	N/A	N/A	N/A	
Overland Flow Time, Ti	N/A	N/A	N/A	
Channel Travel Time, Tt	N/A	N/A	N/A	
Calculated Time of Concentration, T _c	N/A	N/A	N/A	
Regional T _c	N/A	N/A	N/A	
Recommended T _c	N/A	N/A	N/A	
T _c selected by User	N/A	N/A	N/A	
Design Rainfall Intensity, I	N/A	N/A	N/A	
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	

N/A	N/A	N/A
N/A	N/A	N/A

N/A	N/A	N/A
N/A	N/A	N/A

Version 4.06 Released August 2018	-					
INLET MANAGEMENT						
Worksheet Protected	-					- K
INLET NAME	Inlet C1	Inlet C2	Inlet D1	Inlet D2	Inlet D3	Inlet D4
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET	AREA	STREET
Hydraulic Condition	In Sump	In Sump	In Sump	In Sump	Swale	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type C	CDOT Type R Curb Opening			

USER-DEFINED INPUT

Minor Q _{Known} (cfs)	2.1	2.2	3.5	2.1	0.7	1.5
lajor Q _{Known} (cfs)	6.8	7.3	11.0	6.3	3.6	4.0
ypass (Carry-Over) Flow from Upstream						
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	Inlet D4	Inlet D5	No Bypass Flow Received	No Bypass Flow Received
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.9	0.0	0.0
Vatershed Characteristics ubcatchment Area (acres)						
ercent Impervious						
IRCS Soil Type						
ikes soli Type						
Natershed Profile						
Dverland Slope (ft/ft)						
Dverland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
					•	
linor Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
Dne-Hour Precipitation, P ₁ (inches)						
<u>lajor Storm Rainfall Input</u>						
esign Storm Return Period, T _r (years)						
Jesign Storm Return Penou, Tr (years)						

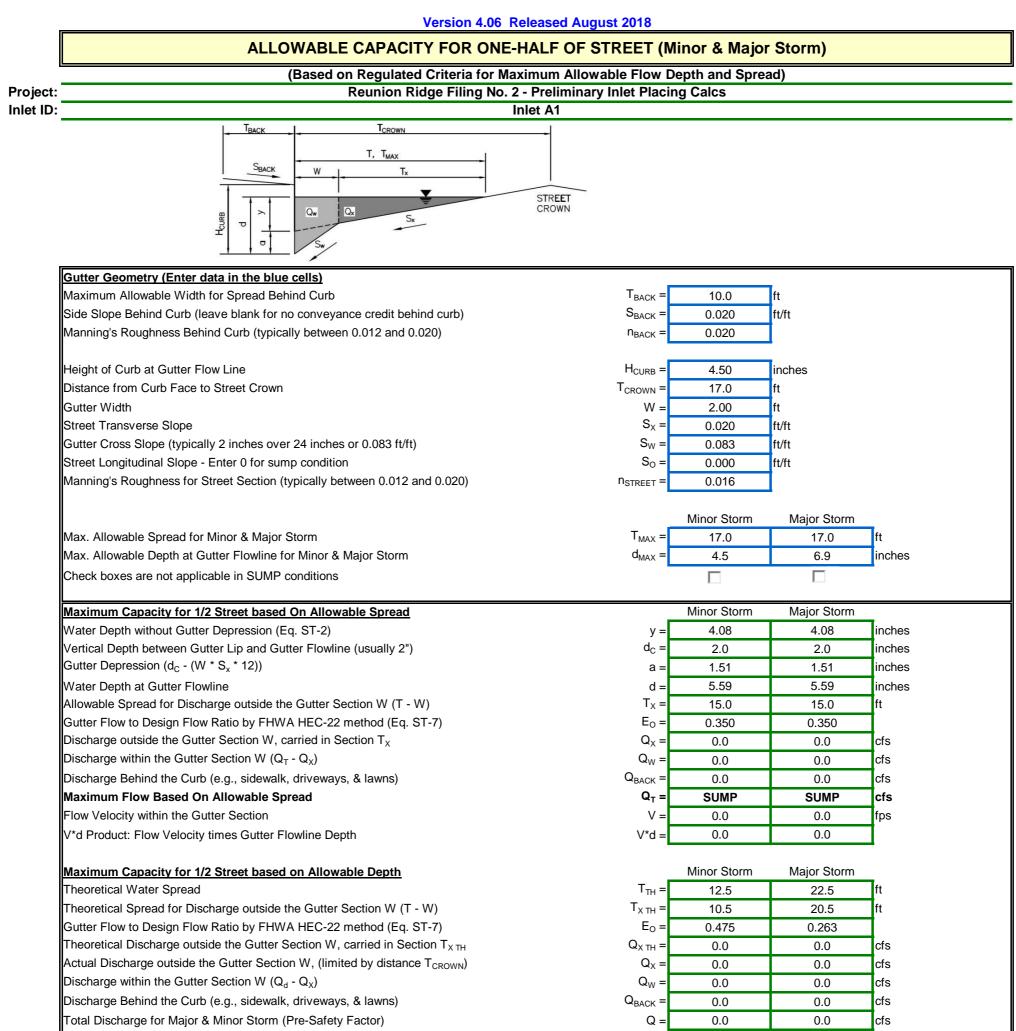
CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	2.1	2.2	3.5	2.1	0.7	1.5
lajor Total Design Peak Flow, Q (cfs)	6.8	7.3	11.0	7.2	3.6	4.0
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	N/A	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A	N/A	0.0	0.0
Minor Storm (Calculated) Analysis of Flow T						
· · · · · · · · · · · · · · · · · · ·	N/A	N/A	N/A	N/A	N/A	N/A
25	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
Γ _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A	N/A	N/A	N/A	N/A
Major Storm (Calculated) Analysis of Flow T						
	N/A	N/A	N/A	N/A	N/A	N/A
C ₅	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A	N/A	N/A	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A	N/A	N/A	N/A	N/A
Overland Flow Time, Ti	N/A	N/A	N/A	N/A	N/A	N/A
Channel Travel Time, Tt	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A	N/A	N/A	N/A	N/A
Regional T _c	N/A	N/A	N/A	N/A	N/A	N/A
Recommended T _c	N/A	N/A	N/A	N/A	N/A	N/A
Γ _c selected by User	N/A	N/A	N/A	N/A	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A	N/A	N/A	N/A	N/A
Calculated Local Peak Flow, Q _p	N/A	N/A	N/A	N/A	N/A	N/A

PART OF FILING NO. 3

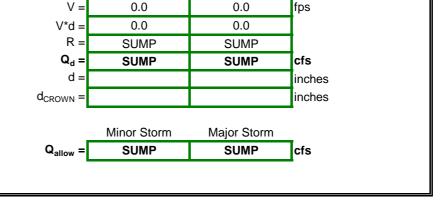
INLET MANAGEMENT

Worksheet Protected

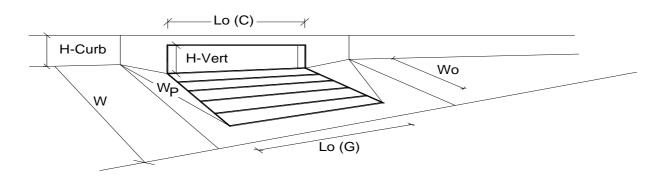

INLET NAME	Inlet D5	Inlet A10
Site Type (Urban or Rural)	URBAN	URBAN
Inlet Application (Street or Area)	STREET	AREA
Hydraulic Condition	On Grade	Swale
Inlet Type	CDOT Type R Curb Opening	CDOT Type C

USER-DEFINED INPUT

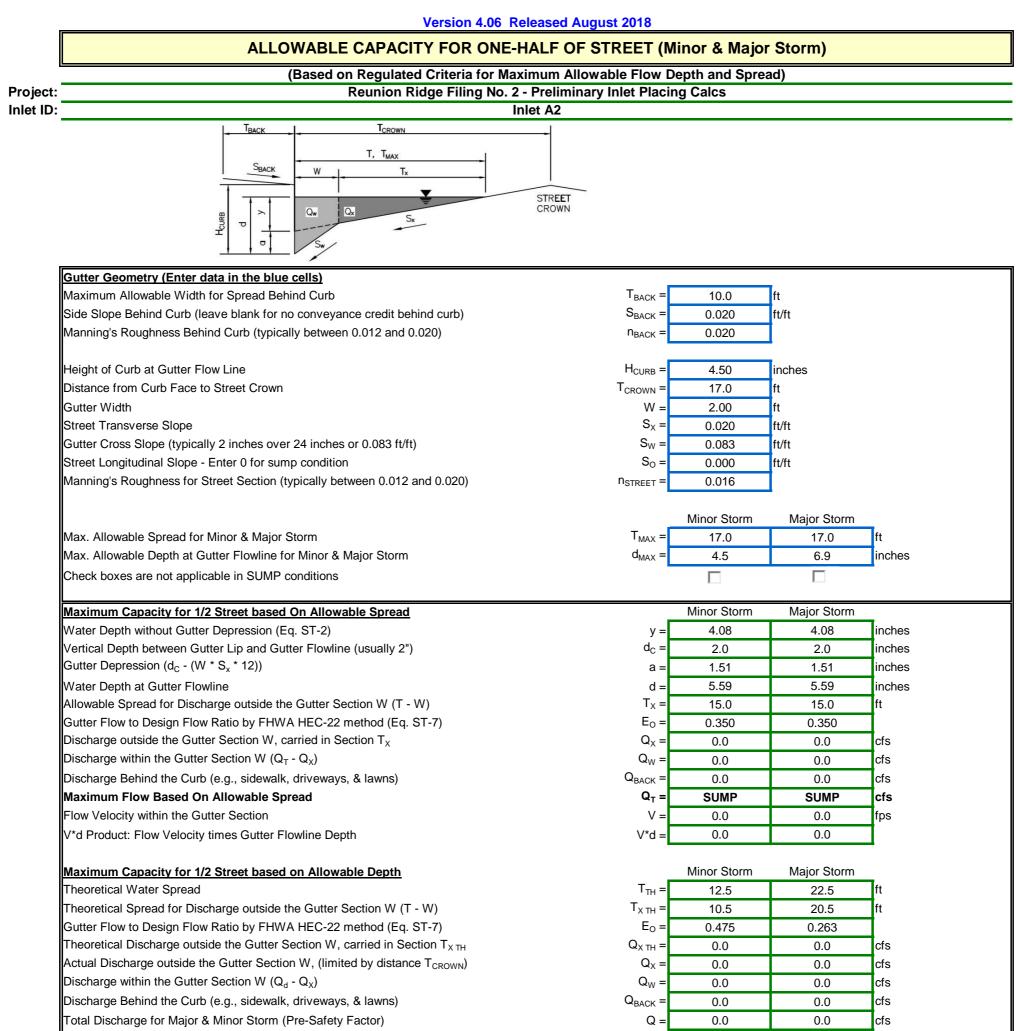
Minor Q _{Known} (cfs)	2.3	0.8
Major Q _{Known} (cfs)	7.5	4.3
	·	
Bypass (Carry-Over) Flow from Upstream		
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0
Watershed Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
Watershed Profile		
Water Shed Frome		
Overland Slope (ft/ft)		
Overland Slope (ft/ft)		
Overland Slope (ft/ft) Overland Length (ft)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) <u>Minor Storm Rainfall Input</u> Design Storm Return Period, T _r (years)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)		
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) <u>Minor Storm Rainfall Input</u> Design Storm Return Period, T _r (years)		


CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	2.3	0.8
Major Total Design Peak Flow, Q (cfs)	7.5	4.3
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.9	0.0
Minor Storm (Calculated) Analysis of Flow T		
C	N/A	N/A
C ₅	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A
Overland Flow Time, Ti	N/A	N/A
Channel Travel Time, Tt	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A
Regional T _c	N/A	N/A
Recommended T _c	N/A	N/A
T _c selected by User	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A
Calculated Local Peak Flow, Qp	N/A	N/A
Maine Oferen (Oplandatad) Analysia of Flam T		
Major Storm (Calculated) Analysis of Flow T C	N/A	N/A
C ₅	N/A	N/A
Overland Flow Velocity, Vi	N/A	N/A
Channel Flow Velocity, Vt	N/A	N/A
Overland Flow Time, Ti	N/A	N/A
Channel Travel Time, Tt	N/A	N/A
Calculated Time of Concentration, T _c	N/A	N/A
Regional T _c	N/A	N/A
Recommended T _c	N/A	N/A
T _c selected by User	N/A	N/A
Design Rainfall Intensity, I	N/A	N/A
Calculated Local Peak Flow, Q	N/A	N/A

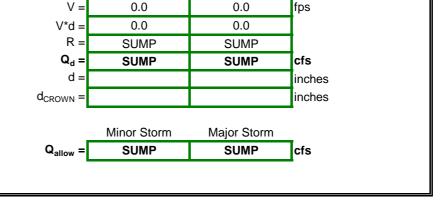

Average Flow Velocity Within the Gutter Section

V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

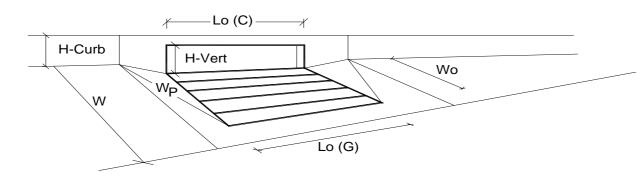


INLET IN A SUMP OR SAG LOCATION

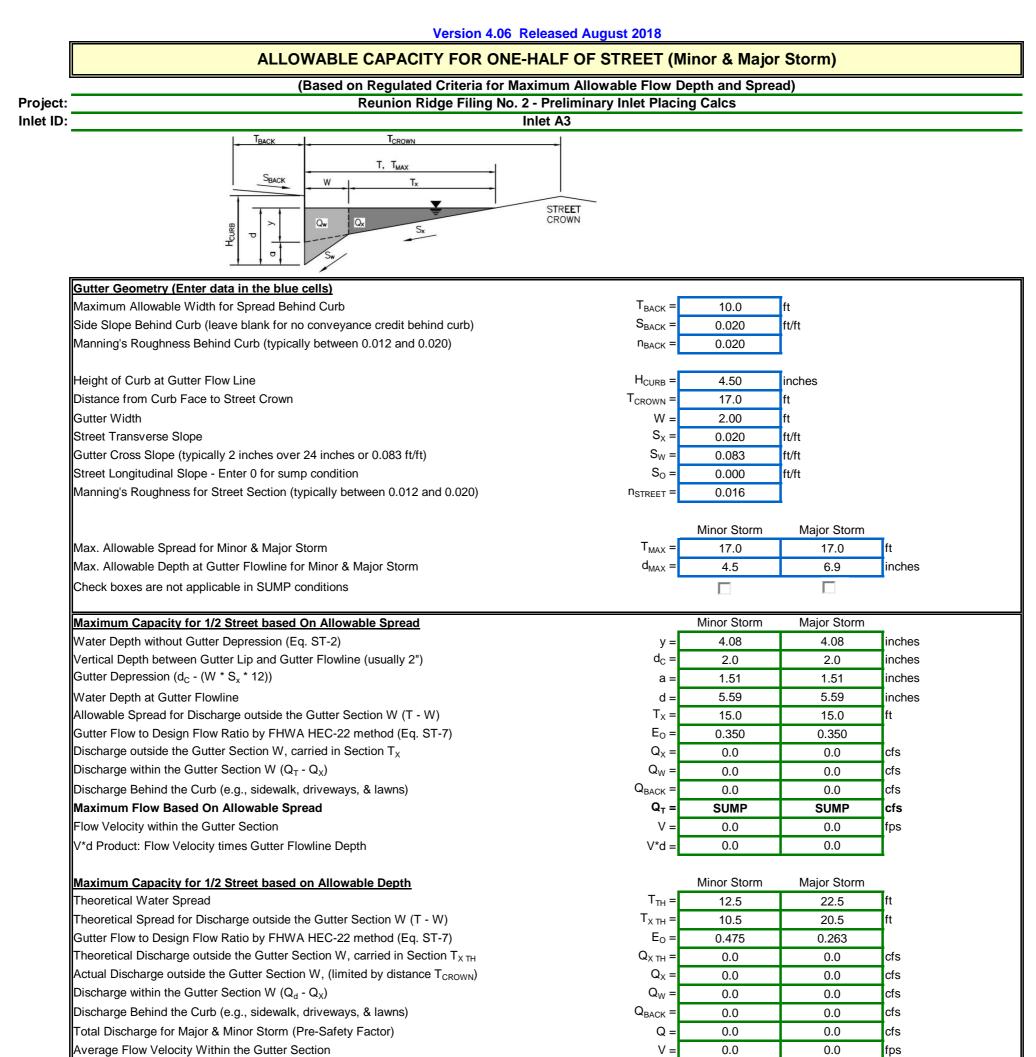
Version 4.06 Released August 2018



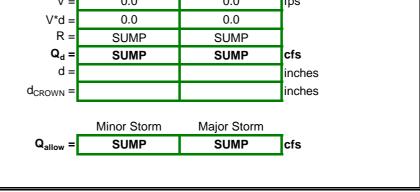
Design Information (Input) Europe of Instant	_	MINOR	MAJOR	_
Type of Infet	Type =	CDOT Type R	Curb Opening	_
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information	_	MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A]
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	7
Grate Flow Analysis (Calculated)		MINOR	MAJOR	<u>.</u>
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	-	MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	7
Clogging Factor for Multiple Units	Clog =	0.10	0.10	4
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	3.0	5.1	cfs
nterception with Clogging	Q _{wa} =	2.7	4.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	- We	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	9.8	10.6	cfs
nterception with Clogging	Q _{oa} =	8.8	9.5	cfs
Curb Opening Capacity as Mixed Flow	~ ∪a −	MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	5.0	6.8	cfs
nterception with Clogging	Q _{ma} =	4.5	6.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{ma} =	4.3 2.7	4.6	cfs
Resultant Street Conditions	≪Curb =	MINOR		613
Fotal Inlet Length	F	5.00	MAJOR 5.00	feet
rotal inlet Length Resultant Street Flow Spread (based on street geometry from above)	L = T =	5.00	5.00 17.0	ft
Resultant Flow Depth at Street Crown	I = d _{CROWN} =	0.0	0.0	inches
עבסטונמות דוטא שבאנון מו סוופבו טוטאון	CROWN =	0.0	0.0	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	0.58	0.30	1
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	4
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	4
	Grate			_4
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.7	4.6	cfs
LOTAL INTELCEDITION CADACITY LASSINGS CIGNER COMMENT				


Average Flow Velocity Within the Gutter Section

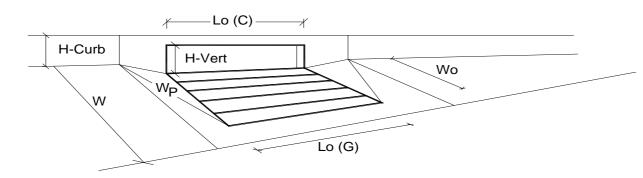
V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)



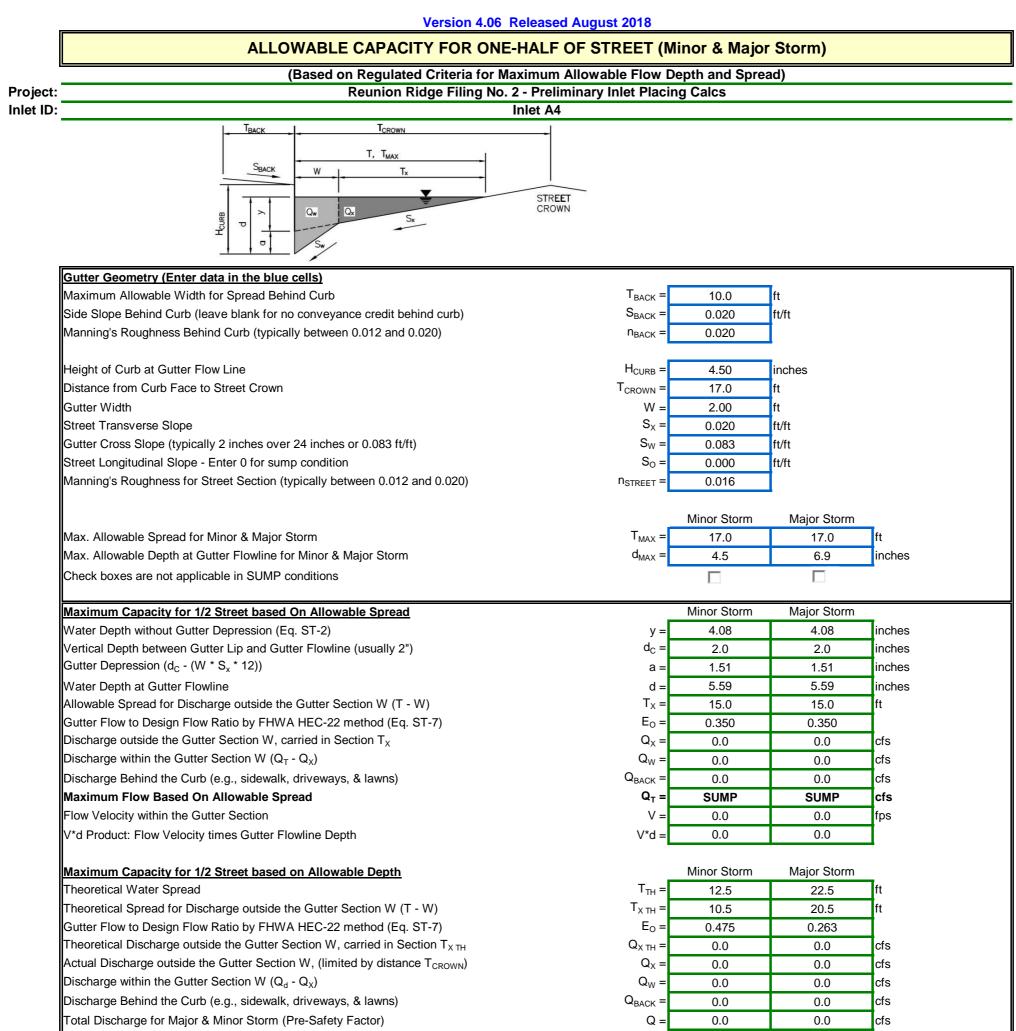
INLET IN A SUMP OR SAG LOCATION


Version 4.06 Released August 2018

Design Information (Input)	_	MINOR	MAJOR	_
Fype of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Jumber of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	$W_{o} =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	4
Curb Opening Information		MINOR	MAJOR	-
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{w}(C) = C_{o}(C) =$	0.67	0.67	4
	C ₀ (C) -	MINOR	MAJOR	
Grate Flow Analysis (Calculated) Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A N/A	N/A N/A	4
Grate Capacity as a Weir (based on Modified HEC22 Method)	City =	MINOR	MAJOR	_1
	Q _{wi} =	N/A	N/A	cfs
nterception without Clogging				
nterception with Clogging	Q _{wa} =	N/A MINOR	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	o F		MAJOR	- (-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	٦.
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	_	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	4
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-
nterception without Clogging	Q _{wi} =	4.9	9.3	cfs
nterception with Clogging	Q _{wa} =	4.6	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	_	MINOR	MAJOR	-
nterception without Clogging	Q _{oi} =	19.5	21.1	cfs
nterception with Clogging	Q _{oa} =	18.3	19.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
nterception without Clogging	Q _{mi} =	9.1	13.0	cfs
nterception with Clogging	Q _{ma} =	8.5	12.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.6	8.7	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
_ow Head Performance Reduction (Calculated)	_	MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.91	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	8.7	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	1.4	7.9	cfs

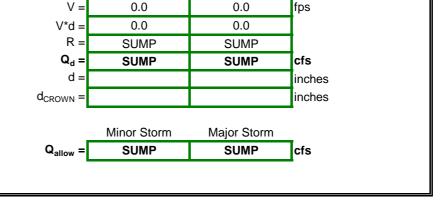


V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

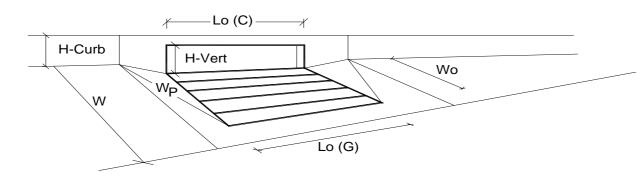


INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018



Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	-
Type of Thiet	Type =		Curb Opening	4
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	_
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information	_	MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	7
Grate Flow Analysis (Calculated)	·	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	-	MINOR	MAJOR	-
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	7
Clogging Factor for Multiple Units	Clog =	0.04	0.04	-
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	6.0	11.6	cfs
nterception with Clogging	Q _{wa} =	5.8	11.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
nterception without Clogging	Q _{oi} =	29.3	31.7	cfs
nterception with Clogging	Q _{oa} =	28.0	30.3	cfs
Curb Opening Capacity as Mixed Flow	∽ua	MINOR	MAJOR	^{1 · · ·}
Interception without Clogging	Q _{mi} =	12.4	17.8	cfs
nterception with Clogging	Q _{ma} =	11.8	17.0	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{ma} =	5.8	11.1	cfs
Resultant Street Conditions	≪Curb -	MINOR	MAJOR	013
Fotal Inlet Length	F	15.00	MAJOR 15.00	feet
rotal inlet Length Resultant Street Flow Spread (based on street geometry from above)	L = T =	12.5	15.00	ft
Resultant Flow Depth at Street Crown	I = d _{CROWN} =	0.0	0.0	inches
	GROWN −	0.0	0.0	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	0.42	0.53	d
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.68	0.76	4
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	4
	Grate -			_4
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.8	11.1	cfs
	~a -	0.0		→


Average Flow Velocity Within the Gutter Section

V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type R	Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Jumber of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Vidth of a Unit Grate	$W_{o} =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	-
Curb Opening Information	-0(-)	MINOR	MAJOR	-4
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches		6.00	6.00	
•	H _{throat} =			inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	4
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	4
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Giate	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	-
Curb Opening as a Weir (based on Modified HEC22 Method)	olog –	MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	4.9	9.3	cfs
Interception with Clogging	Q _{wa} =	4.6	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	- ,
Interception without Clogging	Q _{oi} =	19.5	21.1	cfs
Interception with Clogging	Q _{oa} =	18.3	19.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	- .
nterception without Clogging	Q _{mi} =	9.1	13.0	cfs
nterception with Clogging	Q _{ma} =	8.5	12.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.6	8.7	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	-			_
_ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.91	7
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
č				
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	8.7	cfs
. e.a. and interception outputty (assumes brogged condition)	a	1.0	5.9	cfs

(Based on Regulated Criteria for Maximum	Allowable Flow	Depth and Spre	ad)	
Reunion Ridge Filing No. 2 - Prel		ng Calcs		
	,			
T, T _{MAX}				
SBACK W Tx				
STRE				
CRO				
Sw Sw				
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.020		
Height of Curb at Gutter Flow Line	H _{CURB} =	4.50	inches	
Distance from Curb Face to Street Crown	T _{CURB} =	4.50 17.0	inches	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	$S_X =$	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _w =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _O =	0.020	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.016		
May Allowable Spread for Minor 9 Major Storm	т	Minor Storm	Major Storm	4
Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	T _{MAX} = d _{MAX} =	17.0 4.5	17.0 6.9	ft inches
Allow Flow Depth at Street Crown (leave blank for no)		4.5	0:5	check = yes
Allow How Departal Circer Crown (leave blank for ho)			l•	check – yes
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	4.08	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d_c - (W * S _x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W)	d = T _x =	5.59 15.0	5.59 15.0	inches ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E _o =	0.350	0.350	-1"
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	10.0	10.0	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _W =	5.4	5.4	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.3	0.3	cfs
Maximum Flow Based On Allowable Spread	Q _T =	15.7	15.7	cfs
Flow Velocity within the Gutter Section	V =	7.0	7.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	3.3	3.3	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	Т _{тн} =	12.5	22.5	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	Т _{х тн} =	10.5	20.5	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.475	0.263	
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	Q _{X TH} =	3.8	22.8	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	3.8	22.1	cfs
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _W =	3.4	8.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor) Average Flow Velocity Within the Gutter Section	Q = V =	7.3 5.9	33.0 8.3	cfs fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	v = V*d =	2.2	4.8	
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	1.00	0.83	-1
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	7.3	27.5	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	4.50	6.55	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.00	0.96	inches
		Minor Storm		

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =		Curb Opening	7
1 Local Depression (additional to con	tinuous gutter depression 'a')	a _{LOCAL} =	4.5	4.5	inches
Total Number of Units in the Inlet (C		No =	2	2	-
Length of a Single Unit Inlet (Grate	or Curb Opening)	$L_0 =$	5.00	5.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	-	C _f -G =	N/A	N/A	
	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allow			MINOR	MAJOR	
	et (from Sheet Inlet Management)	Q ₀ =	1.9	9.9	cfs
Water Spread Width	, , , , , , , , , , , , , , , , , , ,	Τ=	6.6	14.2	ft
Water Depth at Flowline (outside of	local depression)	d =	3.1	4.9	inches
Water Depth at Street Crown (or at		d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E _o =	0.781	0.420	-
Discharge outside the Gutter Section		Q _x =	0.4	5.7	cfs
Discharge within the Gutter Section		$Q_w =$	1.5	4.1	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section	W	A _W =	0.35	0.65	sq ft
Velocity within the Gutter Section W		V _W =	4.3	6.3	fps
Water Depth for Design Condition		d _{LOCAL} =	7.6	9.4	inches
Grate Analysis (Calculated)		LOCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E = E _{o-GRATE} =	N/A N/A	N/A	
Under No-Clogging Condition		-o-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Spl	ash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		$R_{f} =$	N/A	N/A	ips
Interception Rate of Side Flow		$R_{x} =$	N/A	N/A	-
Interception Capacity		$R_x = Q_i =$	N/A	N/A N/A	cfs
Under Clogging Condition		Q _i –	MINOR	MAJOR	015
Clogging Coefficient for Multiple-un	it Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Gr		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Mu			N/A	N/A N/A	ft
Minimum Velocity Where Grate Spl		L _e = V _o =	N/A	N/A N/A	fps
Interception Rate of Frontal Flow		$R_{f} =$	N/A	N/A	ips
Interception Rate of Side Flow		$R_{f} = R_{x} =$	N/A	N/A N/A	-
Actual Interception Capacity		$Q_a =$	N/A	N/A N/A	cfs
	plied to curb opening or next d/s inlet)		N/A	N/A N/A	-
Curb or Slotted Inlet Opening An		Q _b =	MINOR	MAJOR	cfs
		s _ Г			ft/ft
Equivalent Slope S _e (based on grat		S _e =	0.215	0.125	-
Required Length L _T to Have 100%		L _T =	5.75 MINOR	16.95	ft
Under No-Clogging Condition	r Clotted Inlet (minimum of L. L.)	. г		MAJOR	1 4
Effective Length of Curb Opening o	r Siotted iniet (minimum of L, L_T)	L=	5.75	10.00	ft
Interception Capacity		Q _i =	1.9	7.9	cfs
Under Clogging Condition		-	MINOR	MAJOR	-
Clogging Coefficient		CurbCoef =	1.25	1.25	4
Clogging Factor for Multiple-unit Cu	rb Opening or Slotted Inlet	CurbClog =	0.06	0.06	4
Effective (Unclogged) Length		L _e =	9.37	9.37	ft
Actual Interception Capacity		Q _a =	1.9	7.7	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	2.2	cfs
Summary			MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	1.9	7.7	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	2.2	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	78	%

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	T _{BACK} = S _{BACK} = N _{BACK} = $H_{CURB} =$ $T_{CROWN} =$ W = $S_X =$ $S_W =$ $S_Q =$ $N_{STREET} =$ $T_{MAX} =$ $d_{MAX} =$	10.0 0.020 0.020 4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5 Minor Storm	ft ft/ft inches ft ft/ft	ft inches check = yes
Teach Tonown T. Tux: Colspan="2">STREET CROWN Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Metric Transverse Slope Gutter Vidth Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Max. Allowable Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Maximum Capacity for 1/2 Str	$S_{BACK} =$ $n_{BACK} =$ $H_{CURB} =$ $T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	0.020 0.020 4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	inches ft ft ft/ft ft/ft ft/ft Major Storm 6.9 I Major Storm	inches
T. Twx T. Twx T. Twx Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$S_{BACK} =$ $n_{BACK} =$ $H_{CURB} =$ $T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	0.020 0.020 4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	inches ft ft ft/ft ft/ft ft/ft Major Storm 6.9 I Major Storm	inches
CROWN	$S_{BACK} =$ $n_{BACK} =$ $H_{CURB} =$ $T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	0.020 0.020 4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	inches ft ft ft/ft ft/ft ft/ft Major Storm 6.9 I Major Storm	inches
Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _C - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$S_{BACK} =$ $n_{BACK} =$ $H_{CURB} =$ $T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	0.020 0.020 4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	inches ft ft ft/ft ft/ft ft/ft Major Storm 6.9 I Major Storm	inches
Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$S_{BACK} =$ $n_{BACK} =$ $H_{CURB} =$ $T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	0.020 0.020 4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	inches ft ft ft/ft ft/ft ft/ft Major Storm 6.9 I Major Storm	inches
Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$n_{BACK} =$ $H_{CURB} =$ $T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	0.020 4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	inches ft ft ft/ft ft/ft ft/ft Major Storm 6.9 I Major Storm	inches
Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$H_{CURB} =$ $T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $N_{STREET} =$ $T_{MAX} =$	4.50 17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	ft ft/ft ft/ft ft/ft Major Storm 17.0 6.9 I Major Storm	inches
Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$T_{CROWN} =$ $W =$ $S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	17.0 2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5	ft ft/ft ft/ft ft/ft Major Storm 17.0 6.9 I Major Storm	inches
Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$W = S_X = S_W = S_O = n_{STREET} = T_{MAX} =$	2.00 0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5 Minor Storm	ft/ft ft/ft Major Storm 17.0 6.9 I Major Storm	inches
Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _C - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$S_X =$ $S_W =$ $S_O =$ $n_{STREET} =$ $T_{MAX} =$	0.020 0.083 0.020 0.016 Minor Storm 17.0 4.5 Minor Storm	ft/ft ft/ft Major Storm 17.0 6.9 I Major Storm	inches
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	S _W = S _O = N _{STREET} = T _{MAX} =	0.083 0.020 0.016 Minor Storm 17.0 4.5 Minor Storm	ft/ft ft/ft Major Storm 17.0 6.9 I Major Storm	inches
Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	S _O = N _{STREET} = T _{MAX} =	0.020 0.016 Minor Storm 17.0 4.5 Minor Storm	ft/ft Major Storm 17.0 6.9 Major Storm	inches
Manning's Roughness for Street Section (typically between 0.012 and 0.020) Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) <u>Maximum Capacity for 1/2 Street based On Allowable Spread</u> Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	n _{street} = T _{MAX} =	0.016 Minor Storm 17.0 4.5 Minor Storm	Major Storm 17.0 6.9 IV Major Storm	inches
Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _C - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	T _{MAX} =	Minor Storm 17.0 4.5	17.0 6.9 V Major Storm	inches
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)		17.0 4.5	17.0 6.9 V Major Storm	inches
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)		17.0 4.5	17.0 6.9 V Major Storm	inches
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) <u>Maximum Capacity for 1/2 Street based On Allowable Spread</u> Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)		4.5	6.9 ✓ Major Storm	inches
Allow Flow Depth at Street Crown (leave blank for no) Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _C - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)		Minor Storm	Major Storm	
Maximum Capacity for 1/2 Street based On Allowable SpreadWater Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")Gutter Depression (d_c - (W * Sx * 12))Water Depth at Gutter FlowlineAllowable Spread for Discharge outside the Gutter Section W (T - W)Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2) Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d _C - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	_		1	
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") Gutter Depression (d_c - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)				
Gutter Depression (d _C - (W * S _x * 12)) Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	y =	4.08	4.08	inches
Water Depth at Gutter Flowline Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	d _C =	2.0	2.0	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	a =	1.51	1.51	inches
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	_ d =	5.59	5.59	inches
	T _X =	15.0	15.0	ft
Discharge outside the Gutter Section W, carried in Section T_x	E ₀ = Q _X =	0.350	0.350	
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _X =	10.0	10.0	cfs cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _W =	5.4 0.3	5.4 0.3	cfs
Maximum Flow Based On Allowable Spread	$\mathbf{Q}_{\text{BACK}} = \mathbf{Q}_{\text{T}} =$	15.7	15.7	cfs
Flow Velocity within the Gutter Section	V =	7.0	7.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	v = V*d =	3.3	3.3	100
			•	_
Maximum Capacity for 1/2 Street based on Allowable Depth	- F	Minor Storm	Major Storm	4
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W)	Т _{тн} = Т _{х тн} =	12.5	22.5	ft ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$E_0 =$	10.5 0.475	20.5 0.263	ft
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	с _о = Q _{х тн} =	3.8	22.8	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN})	$Q_X =$	3.8	22.0	cfs
Discharge within the Gutter Section W ($Q_d - Q_x$)	Q _X =	3.4	8.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	7.3	33.0	cfs
Average Flow Velocity Within the Gutter Section	Q = V =	5.9	8.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	2.2	4.8	
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	1.00	0.83	-
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	7.3	27.5	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	4.50	6.55	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.00	0.96	inches
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =		Curb Opening	7
Local Depression (additional to c	ontinuous gutter depression 'a')	a _{LOCAL} =	4.5	4.5	inches
Total Number of Units in the Inle		No =	2	2	-
Length of a Single Unit Inlet (Gra	te or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be	greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Uni	-	C _f -G =	N/A	N/A	
	Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < All		· ·	MINOR	MAJOR	-
	reet (from Sheet Inlet Management)	Q ₀ =	3.4	10.8	cfs
Water Spread Width		T =	8.9	14.7	ft
Water Depth at Flowline (outside	of local depression)	d =	3.6	5.0	inches
Water Depth at Street Crown (or	at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Fl	OW	E ₀ =	0.639	0.405	-
Discharge outside the Gutter Sec	tion W, carried in Section T _x	Q _x =	1.2	6.4	cfs
Discharge within the Gutter Sect	on W	Q _w =	2.2	4.4	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Sect	on W	A _W =	0.44	0.67	sq ft
Velocity within the Gutter Section	W	V _W =	4.9	6.5	fps
Water Depth for Design Conditio		d _{LOCAL} =	8.1	9.5	inches
Grate Analysis (Calculated)			MINOR	MAJOR	
Total Length of Inlet Grate Openi	ng	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flo	-	E _{o-GRATE} =	N/A	N/A	1
Under No-Clogging Condition			MINOR	MAJOR	
Minimum Velocity Where Grate	Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	-1'
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		· •	MINOR	MAJOR	
Clogging Coefficient for Multiple-	unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of I		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate	Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	1
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
	applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening	Analysis (Calculated)	•	MINOR	MAJOR	
Equivalent Slope Se (based on g	ate carry-over)	S _e =	0.180	0.121	ft/ft
Required Length L_T to Have 100	% Interception	L _T =	8.34	17.97	ft
Under No-Clogging Condition		•	MINOR	MAJOR	_
Effective Length of Curb Opening	g or Slotted Inlet (minimum of L, L_T)	L =	8.34	10.00	ft
Interception Capacity		Q _i =	3.4	8.3	cfs
Under Clogging Condition			MINOR	MAJOR	
Clogging Coefficient		CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit	Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length		$L_{e} =$	9.37	9.37	ft
Actual Interception Capacity		L _e = Q _a =	3.4	8.1	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a		⊂ _a = Q _b =	0.0	2.7	cfs
Summary		~p -	MINOR	MAJOR	
	v	o –			cfs
	-				-
	··· sypassing inter				
Total Inlet Interception Capacit Total Inlet Carry-Over Flow (flo Capture Percentage = Q _a /Q _o =	-	Q = Q _b = C% =	3.4 0.0 100	8.1 2.7 75	cfs cfs %

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

(Based on Regulated Criteria for Maximum	Allowable Flow D	epth and Spre	ad)	
Reunion Ridge Filing No. 2 - Prelir Inlet A6	ninary Inlet Placi	ng Calcs		
I TBACK I TCROWN				
SBACK W Tx SBACK W Tx W Qx Stree CROW	T N			
Sw Sw				
Gutter Geometry (Enter data in the blue cells)	- F		1.	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	N _{BACK} =	0.020	1	
Height of Curb at Gutter Flow Line	H _{CURB} =	4.50	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _O =	0.020	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.016		
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	17.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	4.5	6.9	inches
Allow Flow Depth at Street Crown (leave blank for no)	-		V	check = yes
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	4.08	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	y = d _C =	2.0	2.0	inches
Gutter Depression (d _c - (W * S_x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	5.59	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	15.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.350	0.350	1
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	10.0	10.0	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _W =	5.4	5.4	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.3	0.3	cfs
Maximum Flow Based On Allowable Spread	Q _T =	15.7	15.7	cfs
Flow Velocity within the Gutter Section	V =	7.0	7.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	3.3	3.3	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	Т _{тн} =	12.5	22.5	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	Т _{х тн} =	10.5	20.5	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.475	0.263	1
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	Q _{X TH} =	3.8	22.8	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	3.8	22.1	cfs
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _W =	3.4	8.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	7.3	33.0	cfs
Average Flow Velocity Within the Gutter Section	V =	5.9	8.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	2.2	4.8	-
Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm	R =	1.00	0.83	
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	7.3	27.5	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)	d = d _{CROWN} =	4.50	6.55	inches
Nesonant Flow Depth at Street Crown (Salety Factor Applieu)	GCROWN -	0.00	0.96	inches
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =		Curb Opening	7
1 Local Depression (additional to co	ontinuous autter depression 'a')	a _{LOCAL} =	4.5	4.5	inches
Total Number of Units in the Inlet		No =	1	1	-
Length of a Single Unit Inlet (Grat		$L_0 =$	5.00	5.00	ft
Width of a Unit Grate (cannot be		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	-	C _f -G =	N/A	N/A	
	Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allo			MINOR	MAJOR	
	reet (from Sheet Inlet Management)	$Q_{o} =$	3.2	9.5	cfs
Water Spread Width		T =	8.6	14.0	ft
Water Depth at Flowline (outside	of local depression)	d =	3.6	4.9	inches
Water Depth at Street Crown (or		d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flo	WG	E _o =	0.653	0.426	1
Discharge outside the Gutter Sec		Q _x =	1.1	5.4	cfs
Discharge within the Gutter Section		Q _w =	2.1	4.0	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section	on W	A _W =	0.43	0.64	sq ft
Velocity within the Gutter Section	W	V _W =	4.9	6.3	fps
Water Depth for Design Condition		d _{LOCAL} =	8.1	9.4	inches
Grate Analysis (Calculated)		LOOME	MINOR	MAJOR	
Total Length of Inlet Grate Openir	na	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flo	-	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition		0 Olulle	MINOR	MAJOR	
Minimum Velocity Where Grate S	Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Interception Capacity		, Q _i =	N/A	N/A	cfs
Under Clogging Condition		' L	MINOR	MAJOR	
Clogging Coefficient for Multiple-	unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of M		с L _e =	N/A	N/A	ft
Minimum Velocity Where Grate S	•	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	4'
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
	applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening A	Analysis (Calculated)		MINOR	MAJOR	•
Equivalent Slope S _e (based on gr	ate carry-over)	S _e =	0.183	0.127	ft/ft
Required Length L _T to Have 100%	6 Interception	L _T =	8.01	16.53	ft
Under No-Clogging Condition		-	MINOR	MAJOR	-
Effective Length of Curb Opening	g or Slotted Inlet (minimum of L, L_T)	L =	5.00	5.00	ft
Interception Capacity		Q _i =	2.6	4.5	cfs
Under Clogging Condition			MINOR	MAJOR	
Clogging Coefficient		CurbCoef =	1.00	1.00	7
Clogging Factor for Multiple-unit (Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	-
Effective (Unclogged) Length		$L_e =$	4.50	4.50	ft
Actual Interception Capacity		 Q_a =	2.5	4.1	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a		Q _b =	0.7	5.4	cfs
Summary			MINOR	MAJOR	
Total Inlet Interception Capacity	v	Q =	2.5	4.1	cfs
	-				-
	a synassing more				
Total Inlet Carry-Over Flow (flo Capture Percentage = Q_a/Q_o = Warning 1: Dimension entered	w bypassing inlet)	Q _b = C% =	0.7 77	5.4 43	cfs %

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

(Based on Regulated Criteria for Maximum Al	lowable Flow D	epth and Spre	ad)	
Reunion Ridge Filing No. 2 - Prelimi Inlet A7	nary Inlet Placir	ng Calcs		
SBACK W Tx	_			
BUD CALL SX STREET CROWN				
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.020]	
Height of Curb at Gutter Flow Line	H _{CURB} =	4.50	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.020	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.016	1	
	_	Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	17.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	4.5	6.9	inches
Allow Flow Depth at Street Crown (leave blank for no)				check = yes
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	4.08	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.51	1.51	inches
Water Depth at Gutter Flowline	d =	5.59	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	15.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Discharge outside the Gutter Section W, carried in Section T_x	E ₀ =	0.350	0.350	
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _X = Q _W =	10.0	10.0	cfs cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _W =	5.4 0.3	5.4 0.3	cfs
Maximum Flow Based On Allowable Spread	$Q_{\rm T} =$	15.7	15.7	cfs
Flow Velocity within the Gutter Section	V =	7.0	7.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	3.3	3.3	
Maximum Canadity for 4/2 Street based on Allowable Danth		Minor Storm	Major Storm	
Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread	Т _{тн} =	12.5	Major Storm 22.5	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	Т _{х тн} =	10.5	20.5	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E _o =	0.475	0.263	1
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	Q _{X TH} =	3.8	22.8	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN})	Q _X =	3.8	22.1	cfs
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _W =	3.4	8.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	7.3	33.0	cfs
Average Flow Velocity Within the Gutter Section	V =	5.9	8.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	2.2	4.8	4
Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6^{"}$) Storm	R =	1.00	0.83	-
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	7.3	27.5	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)	d = d _{CROWN} =	4.50 0.00	6.55 0.96	inches inches
		0.00	0.00	
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

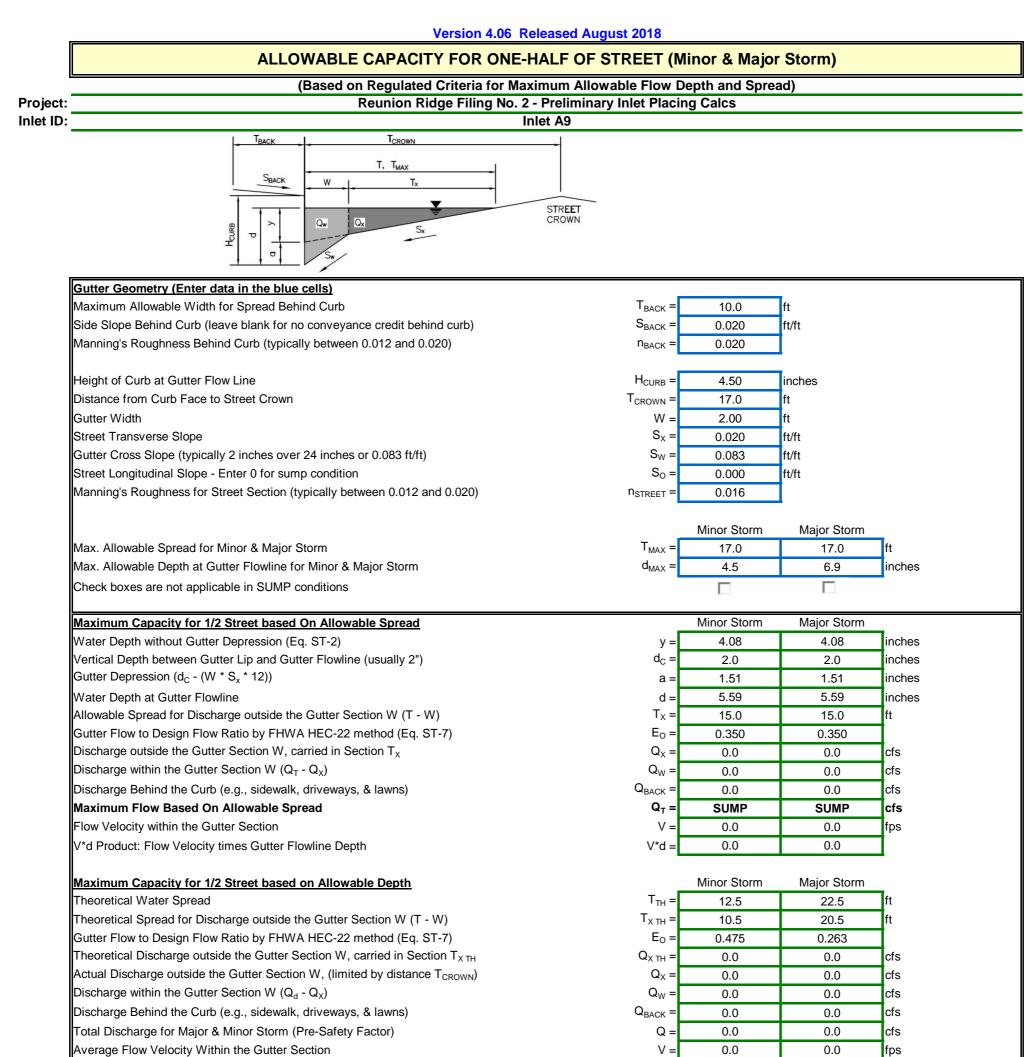
INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

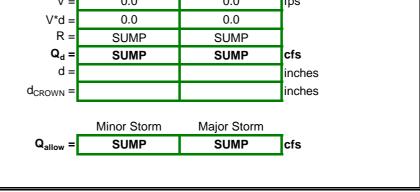
Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =		Curb Opening	7
Local Depression (additional to con	tinuous autter depression 'a')	a _{LOCAL} =	4.5	4.5	inches
Total Number of Units in the Inlet (No =	1	1	
Length of a Single Unit Inlet (Grate		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be gr		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit C	-	C _f -G =	N/A	N/A	
	surb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allow			MINOR	MAJOR	
	eet (from Sheet Inlet Management)	Q ₀ =	0.7	1.8	cfs
Water Spread Width		т=	2.3	6.5	ft
Water Depth at Flowline (outside o	f local depression)	d =	2.1	3.1	inches
Water Depth at Street Crown (or at		d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow		E _o =	1.003	0.791	-
Discharge outside the Gutter Section		Q _x =	0.0	0.4	cfs
Discharge within the Gutter Section		Q _w =	0.7	1.5	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section	ו W	A _W =	0.18	0.34	sq ft
Velocity within the Gutter Section V	V	V _W =	4.0	4.3	fps
Water Depth for Design Condition		d _{LOCAL} =	6.6	7.6	inches
Grate Analysis (Calculated)		PLOUAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	1	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		-0-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Sp	lash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	
Interception Rate of Side Flow		$R_x =$	N/A	N/A	-
Interception Capacity		$Q_i =$	N/A	N/A	cfs
Under Clogging Condition			MINOR	MAJOR	
Clogging Coefficient for Multiple-ur	nit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit G		GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Mu		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Sp		V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	
Interception Rate of Side Flow		R _x =	N/A	N/A	-
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
	pplied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening An		~	MINOR	MAJOR	
Equivalent Slope S _e (based on grat		S _e =	0.271	0.218	ft/ft
Required Length L_T to Have 100%		L _T =	3.11	5.60	ft
Under No-Clogging Condition		-' L	MINOR	MAJOR	
Effective Length of Curb Opening of	or Slotted Inlet (minimum of L, L,	L =	3.11	5.00	ft
Interception Capacity		Q _i =	0.7	1.8	cfs
Under Clogging Condition		G, -	MINOR	MAJOR	
Clogging Coefficient		CurbCoef =	1.00	1.00	
Clogging Factor for Multiple-unit Cl	urb Opening or Slotted Inlet	CurbClog =	0.10	0.10	-
Effective (Unclogged) Length		$L_e =$	4.50	4.50	ft
Actual Interception Capacity		L _e = Q _a =	4.30 0.7	4.50 1.8	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a		$Q_a = Q_b = $	0.7	0.1	-
		v _b =			cfs
Summary		~ [MINOR	MAJOR	
Total Inlet Interception Capacity		Q =	0.7	1.8	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	s not a typical dimension for inlet type specified.	C% =	100	95	%

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

(Based on Regulated Criteria for Maximum Al	lowable Flow D	epth and Spre	ad)		
Reunion Ridge Filing No. 2 - Preliminary Inlet Placing Calcs Inlet A8					
T, T _{MAX} SBACK W Tx SBACK W Tx STREET CROWN	_				
Sw Sw					
Gutter Geometry (Enter data in the blue cells)					
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft		
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft		
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.020	1		
Height of Curb at Gutter Flow Line	H _{CURB} =	4.50	inches		
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft		
Gutter Width	W =	2.00	ft		
Street Transverse Slope	S _X =	0.020	ft/ft		
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft		
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.020	ft/ft		
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.016]		
		Minor Storm	Major Storm		
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	17.0	17.0	ft	
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	4.5	6.9	inches	
Allow Flow Depth at Street Crown (leave blank for no)			\checkmark	check = yes	
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm		
Water Depth without Gutter Depression (Eq. ST-2)	y =	4.08	4.08	inches	
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches	
Gutter Depression (d _C - (W * S _x * 12))	a =	1.51	1.51	inches	
Water Depth at Gutter Flowline	d =	5.59	5.59	inches	
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	15.0	15.0	ft	
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.350	0.350		
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	10.0	10.0	cfs	
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _W =	5.4	5.4	cfs	
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} = Q T =	0.3	0.3	cfs	
Maximum Flow Based On Allowable Spread Flow Velocity within the Gutter Section	v =	15.7 7.0	15.7 7.0	cfs fps	
V*d Product: Flow Velocity times Gutter Flowline Depth	v = V*d =	3.3	3.3	ips	
	-			-	
Maximum Capacity for 1/2 Street based on Allowable Depth Theoretical Water Spread	Т _{тн} =	Minor Storm 12.5	Major Storm 22.5	ft	
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	Т _{х тн} =	12.5	20.5	ft	
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E _o =	0.475	0.263	1	
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	Q _{X TH} =	3.8	22.8	cfs	
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	3.8	22.1	cfs	
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _W =	3.4	8.1	cfs	
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs	
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	7.3	33.0	cfs	
Average Flow Velocity Within the Gutter Section	V =	5.9	8.3	fps	
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	2.2	4.8	1	
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	1.00	0.83	4.	
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	7.3	27.5	cfs	
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	4.50	6.55	inches	
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.00	0.96	inches	
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm		
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	7.3	27.5	cfs	

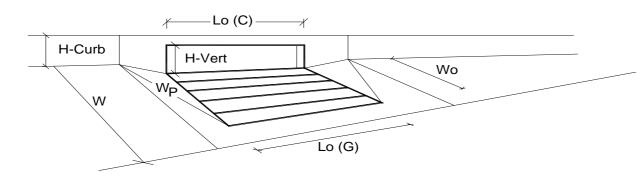

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE


Version 4.06 Released August 2018

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =		Curb Opening	7
Local Depression (additional to co	ntinuous gutter depression 'a')	a _{LOCAL} =	4.5	4.5	inches
Total Number of Units in the Inlet		No =	1	1	
Length of a Single Unit Inlet (Grate		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be g		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit	-	C _f -G =	N/A	N/A	
	Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allo			MINOR	MAJOR	
	reet (from Sheet Inlet Management)	Q ₀ =	0.6	1.5	cfs
Water Spread Width	······	T =	2.2	5.6	ft
Water Depth at Flowline (outside o	of local depression)	d =	2.0	2.9	inches
Water Depth at Street Crown (or a		d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flo		$E_{o} =$	1.011	0.853	
Discharge outside the Gutter Sect		 Q _x =	0.0	0.2	cfs
Discharge within the Gutter Section	-	Q _w =	0.6	1.2	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section	n W	$A_{W} =$	0.17	0.31	sq ft
Velocity within the Gutter Section		V _W =	3.6	4.0	fps
Water Depth for Design Condition			6.5	7.4	inches
Grate Analysis (Calculated)		d _{LOCAL} =	MINOR	MAJOR	IIICHES
	_			ī.	4
Total Length of Inlet Grate Openin	-	_ L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	N	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		. · · ·	MINOR	MAJOR	٦,
Minimum Velocity Where Grate Sp	plash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	-
Interception Rate of Side Flow		R _x =	N/A	N/A	┫.
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		-	MINOR	MAJOR	_
Clogging Coefficient for Multiple-u		GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit G		GrateClog =	N/A	N/A	_
Effective (unclogged) Length of M		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Sp	plash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	
Interception Rate of Side Flow		R _x =	N/A	N/A	
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be a	applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening A	nalysis (Calculated)	_	MINOR	MAJOR	_
Equivalent Slope S _e (based on gra	ate carry-over)	S _e =	0.271	0.233	ft/ft
Required Length L_T to Have 100%	Interception	L _T =	2.88	4.79	ft
Under No-Clogging Condition			MINOR	MAJOR	
Effective Length of Curb Opening	or Slotted Inlet (minimum of L, L _T)	L =	2.88	4.79	ft
Interception Capacity		Q _i =	0.6	1.4	cfs
Under Clogging Condition		-	MINOR	MAJOR	_
Clogging Coefficient		CurbCoef =	1.00	1.00	7
Clogging Factor for Multiple-unit C	Curb Opening or Slotted Inlet	CurbClog =	0.10	0.10	1
Effective (Unclogged) Length	-	L _e =	4.50	4.50	ft
Actual Interception Capacity		Q _a =	0.6	1.4	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a		$Q_b =$	0.0	0.0	cfs
Summary		u.	MINOR	MAJOR	
Total Inlet Interception Capacity	,	Q =	0.6	1.4	cfs
Total Inlet Carry-Over Flow (flow		Q = Q _b =	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o =	· »Jpasonig mory				
	s not a typical dimension for inlet type specified.	C% =	100	99	%

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

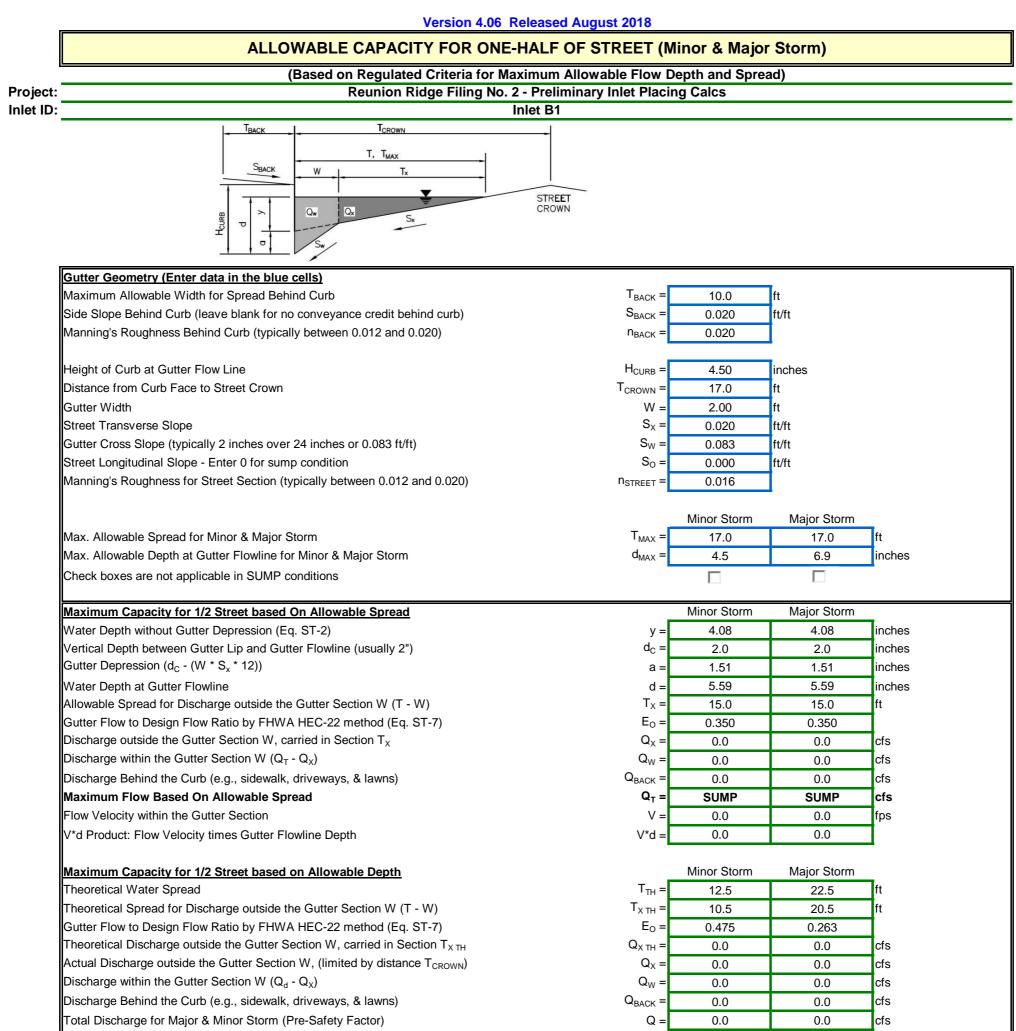


V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

INLET IN A SUMP OR SAG LOCATION

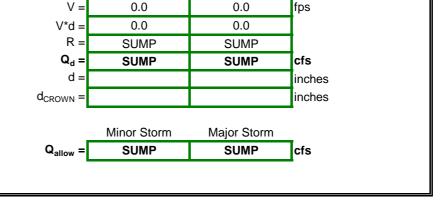
Version 4.06 Released August 2018

Design Information (Input)	_	MINOR	MAJOR	_
CDOT Type R Curb Opening ▼	Type =	CDOT Type R	Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information	_	MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
Grate Flow Analysis (Calculated)	I	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	-
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	1
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	4.9	9.3	cfs
nterception with Clogging	Q _{wa} =	4.6	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	L	MINOR	MAJOR	-
nterception without Clogging	Q _{oi} =	19.5	21.1	cfs
nterception with Clogging	Q _{oa} =	18.3	19.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	9.1	13.0	cfs
nterception with Clogging	Q _{ma} =	8.5	12.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.6	8.7	cfs
Resultant Street Conditions	Cuib	MINOR	MAJOR	
Fotal Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	- ONOWIN			
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.91	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
č	Citato			
		MINOR	MAJOR	
Fotal Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	8.7	cfs
	a	-	-	

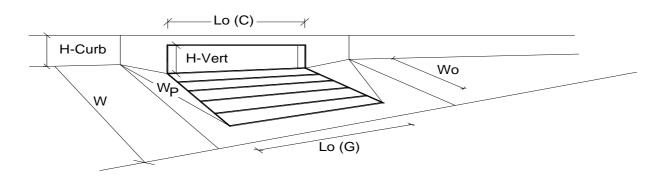

AREA INLET IN A SWALE

Inlet	A10			
– – 1	=			_
		This worksheet us		
		regetal retardance		
	¢ c	letermine Manning	g's n.	
1	d _{MAX}			
Z_L d Z_R		or more informati		
	<u>E</u>	Section 7.2.3 of the	e USDCM.	
Analysis of Trapezoidal Grass-Lined Channel Using SCS Method	_			
NRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D or E	D		
Manning's n (Leave cell D16 blank to manually enter an n value)	n =	see details below		
Channel Invert Slope	S _O =	0.0200	ft/ft	
Bottom Width	B =	0.00	ft	
Left Side Slope	Z1 =	10.00	ft/ft	
Right Side Slope	Z2 =	10.00	ft/ft	
Check one of the following soil types:		Choose One:		-
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _{MAX})		Non-Cohesive		
Non-Cohesive 5.0 fps 0.60		-	5	
Cohesive 7.0 fps 0.80		C Cohesive		
Paved N/A N/A		C Paved		
• • • • •		Minor Storm	Major Storm	
Max. Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	30.80	30.80	feet
Max. Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	1.54	1.54	feet
	∽max −	1.07	1.07	
Maximum Channel Capacity Based On Allowable Top Width		Minor Storm	Major Storm	
	- F		Major Storm	
Max. Allowable Top Width	T _{MAX} =	30.80	30.80	ft
Nater Depth	d =	1.54	1.54	ft
Flow Area	A =	23.72	23.72	sq ft
Netted Perimeter	P =	30.95	30.95	ft
Hydraulic Radius	R =	0.77	0.77	ft
Manning's n based on NRCS Vegetal Retardance	n =	0.037	0.037	
Flow Velocity	V =	4.72	4.72	fps
/elocity-Depth Product	VR =	3.62	3.62	ft^2/s
Hydraulic Depth	D =	0.77	0.77	ft
Froude Number	Fr =	0.95	0.95	-
Max. Flow Based On Allowable Top Width	Q _T =	111.9	111.9	cfs
·				
Maximum Channel Capacity Based On Allowable Water Depth		Minor Storm	Major Storm	
Max. Allowable Water Depth	d _{MAX} =	1.54	1.54	feet
Fop Width	Τ=	30.80	30.80	feet
Flow Area	A =	23.72	23.72	square feet
Netted Perimeter	P =	30.95	30.95	feet
Hydraulic Radius	R =	0.77	0.77	feet
-				IEEL
Manning's n based on NRCS Vegetal Retardance	n =	0.037	0.037	foo
Flow Velocity	V =	4.72	4.72	fps
/elocity-Depth Product	VR =	3.62	3.62	ft^2/s
Hydraulic Depth	D =	0.77	0.77	feet
Froude Number	Fr =	0.95	0.95	
Max. Flow Based On Allowable Water Depth	$Q_d =$	111.9	111.9	cfs
		• <i>c</i> ·		
Allowable Channel Capacity Based On Channel Geometry		Minor Storm	Major Storm	- .
MINOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	111.9	111.9	cfs
MAJOR STORM Allowable Capacity is based on Depth Criterion	d _{allow} =	1.54	1.54	ft
Nater Depth in Channel Based On Design Peak Flow	_			
Design Peak Flow	Q _o =	0.8	4.3	cfs
Nater Depth	d =	0.45	0.66	feet
Гор Width	Τ=	9.06	13.17	feet
- Flow Area	A =	2.05	4.33	square feet
Netted Perimeter	P =	9.10	13.23	feet
Hydraulic Radius	R =	0.23	0.33	feet
Manning's n based on NRCS Vegetal Retardance	n =	0.200	0.101	
Flow Velocity	V =	0.39	0.99	fps
/elocity-Depth Product				4.1.0.1
	VR = D =	0.09	0.32	ft^2/s
Hydraulic Depth	17 =	0.23	0.55	1001
Hydraulic Depth Froude Number	Fr =	0.14	0.30	

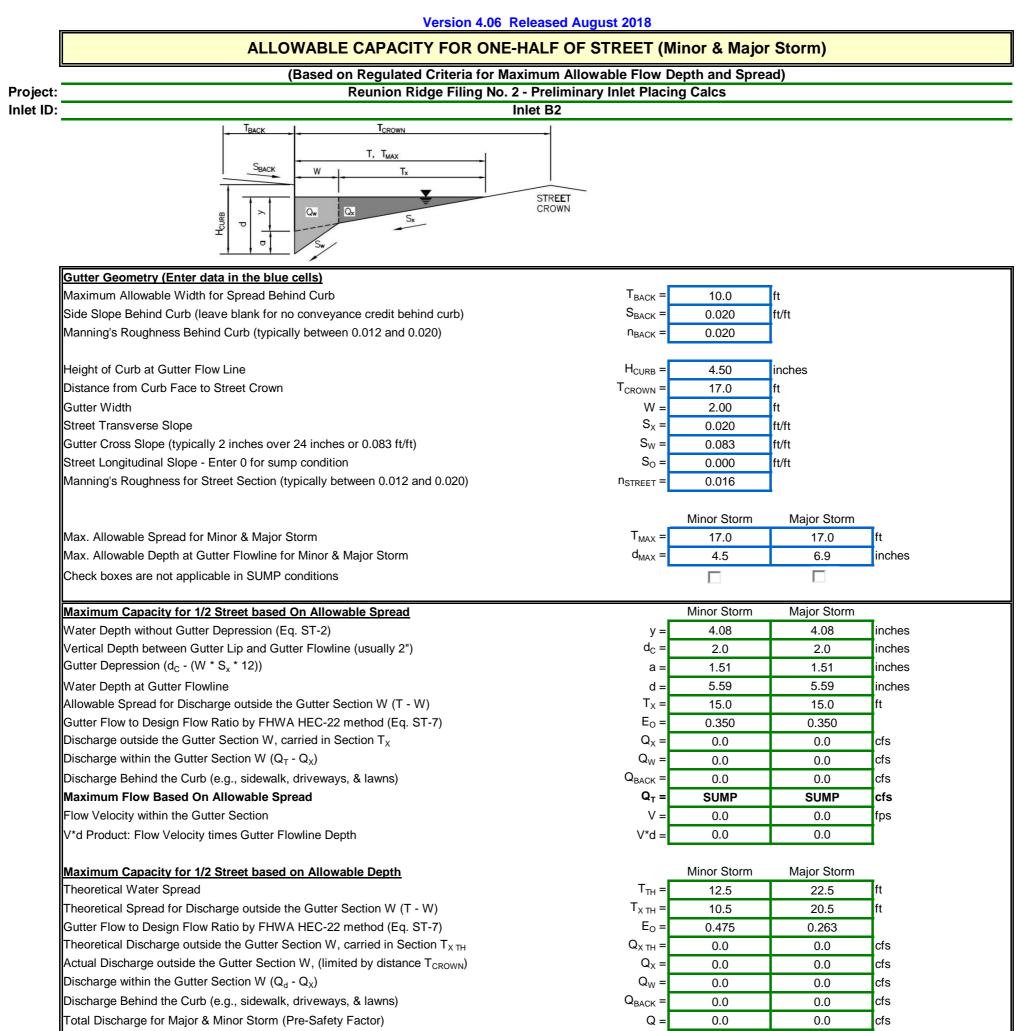
AREA INLET IN A SWALE


Reunion Ridge Filing No. 2 - Preliminary Inlet Placing Calcs

Inlet A10 Inlet Design Information (Input) • Type of Inlet Inlet Type = CDOT Type C CDOT Type C Angle of Inclined Grate (must be <= 30 degrees) 0.00 θ= degrees W = Width of Grate 3.00 feet Length of Grate L = 3.00 feet Open Area Ratio A_{RATIO} = 0.70 W Height of Inclined Grate H_B = 0.00 feet Clogging Factor C_f = 0.50 Hb Grate Discharge Coefficient $C_d =$ 0.96 Orifice Coefficient C_o = 0.64 Weir Coefficient C_w = FLOW 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) 0.66 0.45 d = Grate Capacity as a Weir 3.00 3.00 Submerged Side Weir Length X = feet Q_{ws} = Inclined Side Weir Flow 3.3 5.8 cfs Base Weir Flow Q_{wb} = cfs 4.7 8.2 Interception without Clogging Q_{wi} = 11.3 19.7 cfs Interception with Clogging Q_{wa} : 5.6 9.9 cfs Grate Capacity as an Orifice Interception without Clogging Q_{oi} = 21.8 26.2 cfs Q_{oa} = Interception with Clogging 10.9 13.1 cfs Q_a = Total Inlet Interception Capacity (assumes clogged condition) 5.6 9.9 cfs Bypassed Flow, Q_b = 0.0 cfs 0.0 Capture Percentage = $Q_a/Q_o = C\%$ 100 100 %

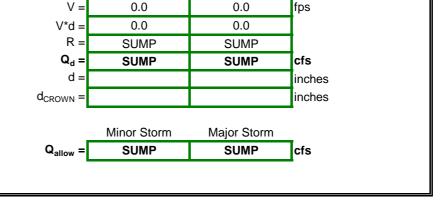

Average Flow Velocity Within the Gutter Section

V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

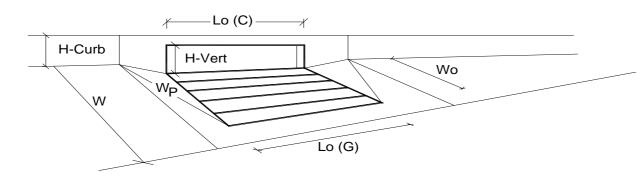


INLET IN A SUMP OR SAG LOCATION

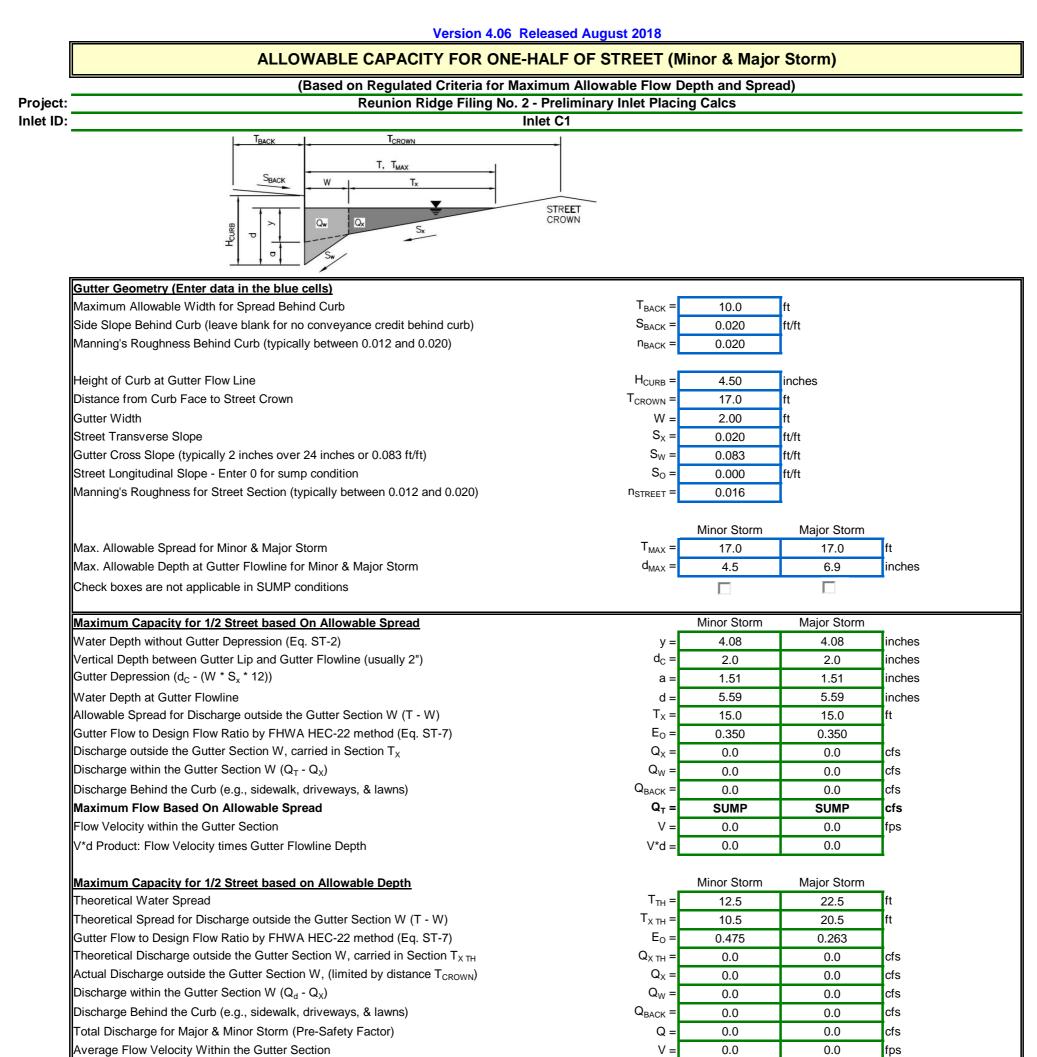
Version 4.06 Released August 2018



Design Information (Input) Europe of Instant	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information	_	MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A]
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	_	MINOR	MAJOR	-
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	•	MINOR	MAJOR	•
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	7
Clogging Factor for Multiple Units	Clog =	0.10	0.10	1
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	3.0	5.1	cfs
nterception with Clogging	Q _{wa} =	2.7	4.6	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	9.8	10.6	cfs
nterception with Clogging	Q _{oa} =	8.8	9.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	5.0	6.8	cfs
nterception with Clogging	Q _{ma} =	4.5	6.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.7	4.6	cfs
Resultant Street Conditions		MINOR	MAJOR	•
Fotal Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on street geometry from above)	- T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
				-
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	0.72	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	7
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	7
-			-	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.7	4.6	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	0.5	1.2	cfs

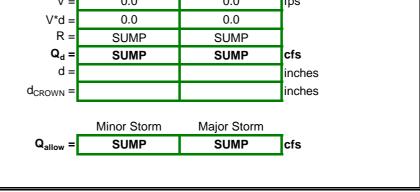

Average Flow Velocity Within the Gutter Section

V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

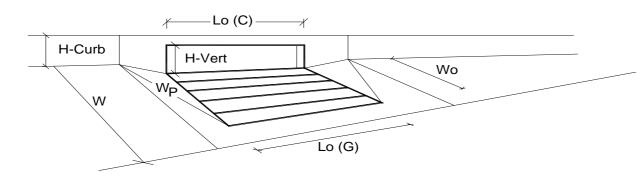


INLET IN A SUMP OR SAG LOCATION

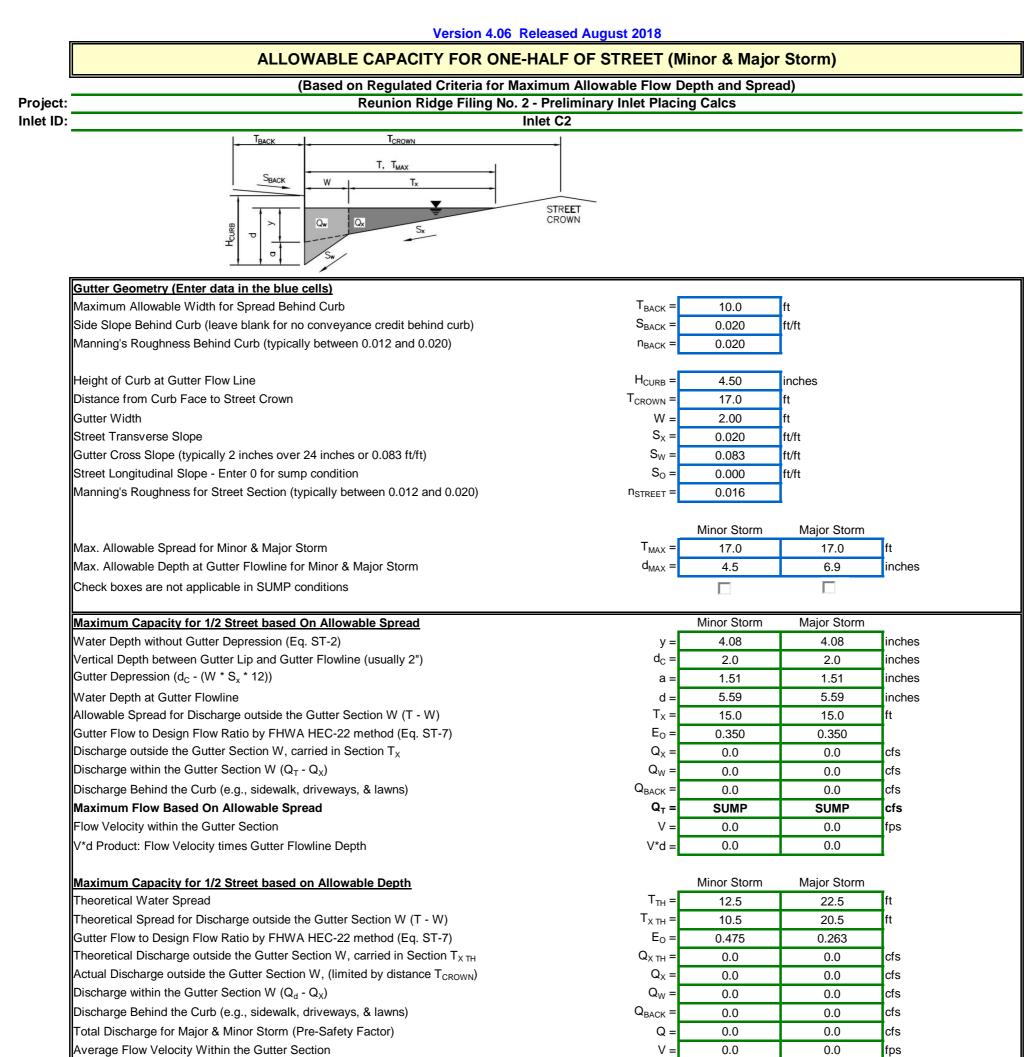
Version 4.06 Released August 2018



Design Information (Input)	_	MINOR	MAJOR	_
Fype of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Jumber of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Vidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	degrees feet
	$VV_p = C_f(C) =$	0.10	0.10	1001
Clogging Factor for a Single Curb Opening (typical value 0.10)				-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	4
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)	- · •	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	4
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	- .
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	•	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	7
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	_
nterception without Clogging	Q _{wi} =	4.9	9.3	cfs
nterception with Clogging	Q _{wa} =	4.6	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	19.5	21.1	cfs
nterception with Clogging	$Q_{oa} =$	18.3	19.8	cfs
Curb Opening Capacity as Mixed Flow	∽ua =	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	9.1	13.0	cfs
Interception without clogging	Q _{mi} = Q _{ma} =	8.5	13.0	cfs
				-
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.6	8.7	cfs
Resultant Street Conditions		MINOR	MAJOR	foot
Total Inlet Length		10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T=	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
ow Head Performance Reduction (Calculated)		MINOR		
	٦ ہ		MAJOR	f+
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	4
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
	~ 「			
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	8.7	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.3	4.7	cfs

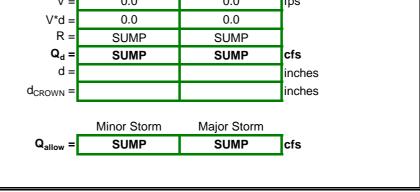

V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

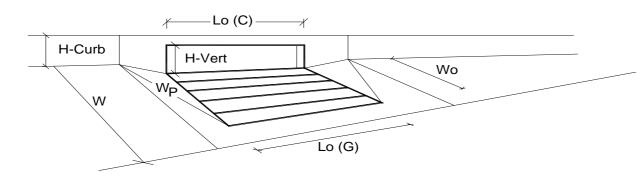


INLET IN A SUMP OR SAG LOCATION

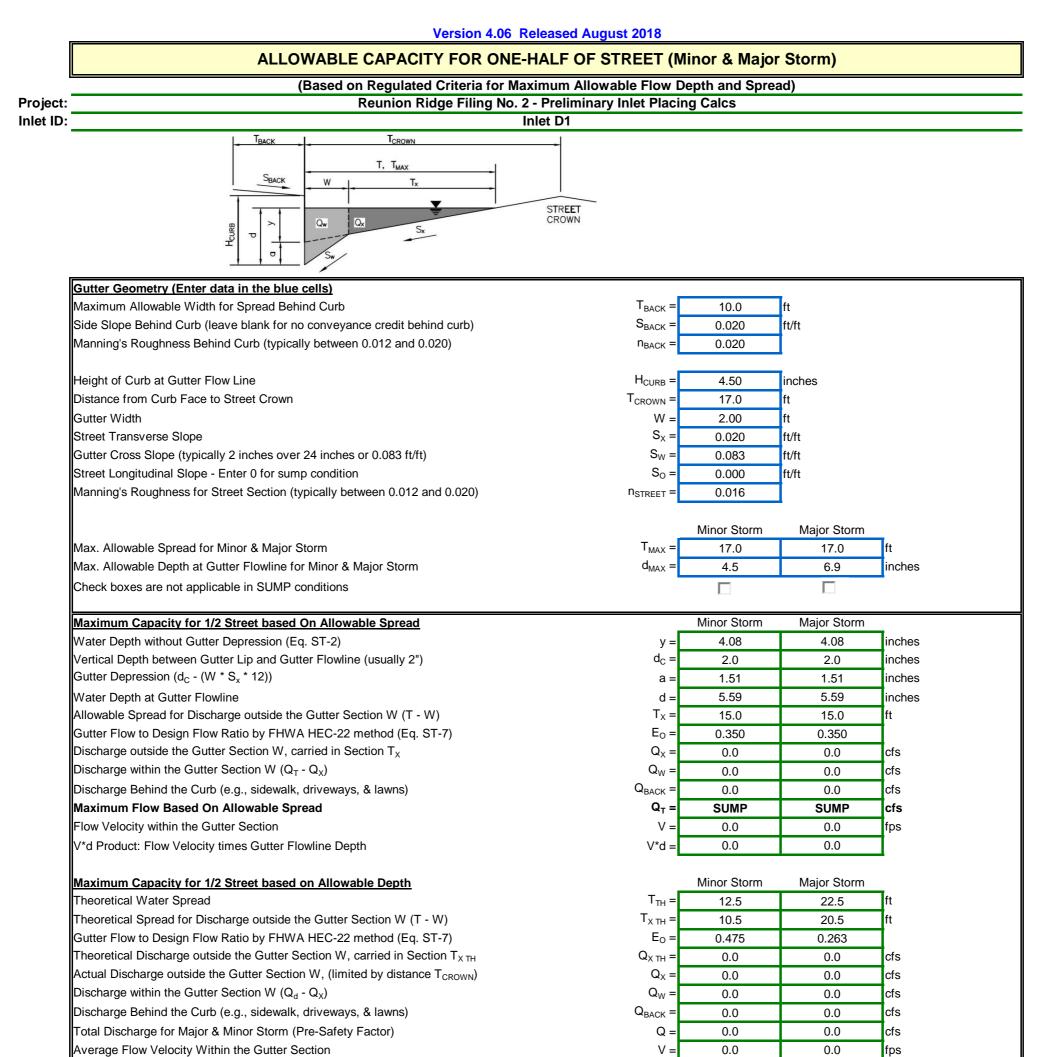
Version 4.06 Released August 2018



Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type R	Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Jumber of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Vidth of a Unit Grate	$W_{o} =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	4
Curb Opening Information	-0(-)	MINOR	MAJOR	-4
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches		6.00	6.00	
•	H _{throat} =			inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	4
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	4
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Grate -	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)	ciug –	MINOR	MAJOR	4
nterception without Clogging	Q _{wi} =	4.9	9.3	cfs
Interception with Clogging	Q _{wa} =	4.6	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	٦,
Interception without Clogging	Q _{oi} =	19.5	21.1	cfs
Interception with Clogging	Q _{oa} =	18.3	19.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	- .
nterception without Clogging	Q _{mi} =	9.1	13.0	cfs
nterception with Clogging	Q _{ma} =	8.5	12.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.6	8.7	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L=	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	-			
_ow Head Performance Reduction (Calculated)		MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.91	7
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	7
-			-	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	8.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	2.1	6.8	cfs

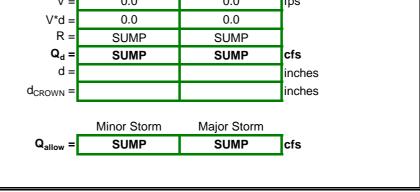

V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

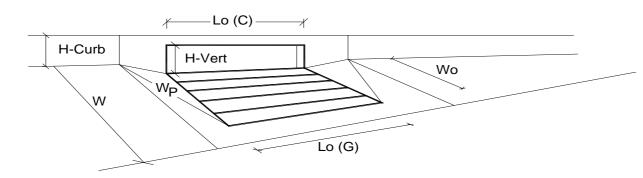


INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018



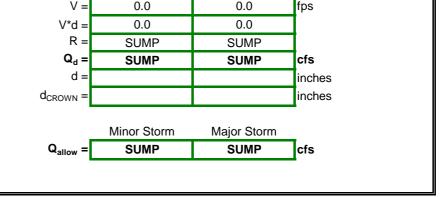
Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information	_	MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	7
Grate Flow Analysis (Calculated)	I	MINOR	MAJOR	· · · · · · · · · · · · · · · · · · ·
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	-
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	1
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	4.9	9.3	cfs
nterception with Clogging	Q _{wa} =	4.6	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	19.5	21.1	cfs
nterception with Clogging	Q _{oa} =	18.3	19.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
nterception without Clogging	Q _{mi} =	9.1	13.0	cfs
nterception with Clogging	Q _{ma} =	8.5	12.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.6	8.7	cfs
Resultant Street Conditions	Cuib	MINOR	MAJOR	
Fotal Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	- ONOWIN			
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.91	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
č			-	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	8.7	cfs
	" L			


V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

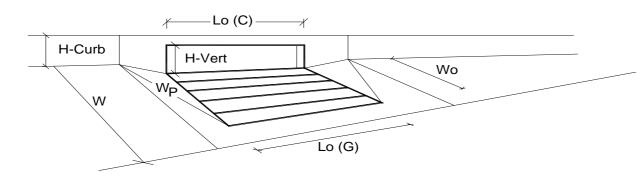
Version 4.06 Released August 2018



CDOT Type R Curb Opening	_	MINOR	MAJOR	_
Type of Infet	Type =		Curb Opening	4
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	4
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
ength of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	7
Clogging Factor for Multiple Units	Clog =	0.04	0.04	7
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	6.0	11.6	cfs
nterception with Clogging	Q _{wa} =	5.8	11.1	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	_	MINOR	MAJOR	_
nterception without Clogging	Q _{oi} =	29.3	31.7	cfs
nterception with Clogging	Q _{oa} =	28.0	30.3	cfs
Curb Opening Capacity as Mixed Flow	-	MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	12.4	17.8	cfs
nterception with Clogging	Q _{ma} =	11.8	17.1	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	5.8	11.1	cfs
Resultant Street Conditions		MINOR	MAJOR	•
Fotal Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	 T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
				-
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	7
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.68	0.76	7
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	7
č			-	
		MINOR	MAJOR	
Fotal Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.8	11.1	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	3.5	11.0	cfs

Version 4.06 Releas									
ALLOWABLE CAPACITY FOR ONE-HAL	F OF STREET (Minor & Major Storm)								
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)									
ect: Reunion Ridge Filing No. 2 - Pre									
ID: Inlet [D2								
TBACK TCROWN	-								
SBACK W Tx									
	TREET ROWN								
Gutter Geometry (Enter data in the blue cells)									
Maximum Allowable Width for Spread Behind Curb	Т _{васк} = <u>10.0</u> ft								
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$ ft/ft								
g 01 Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} = 0.200								
Height of Curb at Gutter Flow Line	H _{CURB} = 4.50 inches								
Distance from Curb Face to Street Crown	$T_{CROWN} = \frac{4.50}{17.0}$ ft								
Gutter Width	W = 2.00 ft								
Street Transverse Slope	W = 2.00 If $S_X = 0.020$ ft/ft								
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_{W} = 0.083$ ft/ft								
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = 0.000$ ft/ft								
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} = 0.016								
	USIREE U.U.U								
	Minor Storm Major Storm								
Max. Allowable Spread for Minor & Major Storm	T _{MAX} = 17.0 17.0 ft								
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} = 4.5 6.9 inches								
Check boxes are not applicable in SUMP conditions									
Maximum Capacity for 1/2 Street based On Allowable Spread	Minor Storm Major Storm								
Water Depth without Gutter Depression (Eq. ST-2)	y = 4.08 4.08 inches								
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _c = 2.0 2.0 inches								
Gutter Depression (d_c - (W * S_x * 12))	a = 1.51 1.51 inches								
Water Depth at Gutter Flowline	d = 5.59 5.59 inches								
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _x = 15.0 15.0 ft								
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ = 0.350 0.350								
Discharge outside the Gutter Section W, carried in Section T_X	$Q_{\rm X} = 0.0 0.0$ cfs								
Discharge within the Gutter Section W ($Q_T - Q_X$)	$Q_{W} = 0.0 0.0 cfs$								
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} = 0.0 0.0 cfs								
Maximum Flow Based On Allowable Spread	Q _T = SUMP SUMP cfs								
Flow Velocity within the Gutter Section	V = 0.0 0.0 fps								
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d = 0.0 0.0								
Maximum Capacity for 1/2 Street based on Allowable Depth	Minor Storm Major Storm								
Theoretical Water Spread	T _{TH} = 12.5 22.5 ft								
	$T_{TH} = 12.5$ 22.5 ft $T_{X TH} = 10.5$ 20.5 ft								
Theoretical Water Spread									
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W)	$T_{X TH} = 10.5$ 20.5 ft								
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$T_{X TH} = 10.5$ 20.5 ft E ₀ = 0.475 0.263								
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section T _{X TH}	$T_{X TH} = \frac{10.5}{E_0} = \frac{20.5}{0.475} \frac{\text{ft}}{0.263}$ $Q_{X TH} = \frac{0.0}{0.0} \frac{0.0}{0.0} \text{cfs}$								
Theoretical Water Spread Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section T _{X TH} Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	$T_{X TH} = \frac{10.5}{E_0} = \frac{20.5}{0.475} \text{ ft}$ $Q_{X TH} = \frac{0.0}{0.0} \frac{0.0}{0.0} \text{ cfs}$ $Q_X = \frac{0.0}{0.0} \frac{0.0}{0.0} \text{ cfs}$								

Average Flow Velocity Within the Gutter Section V*d Product: Flow Velocity Times Gutter Flowline Depth Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6$ ") Storm **Max Flow Based on Allowable Depth (Safety Factor Applied)** Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

Warning 01: Manning's n-value does not meet the USDCM recommended design range.

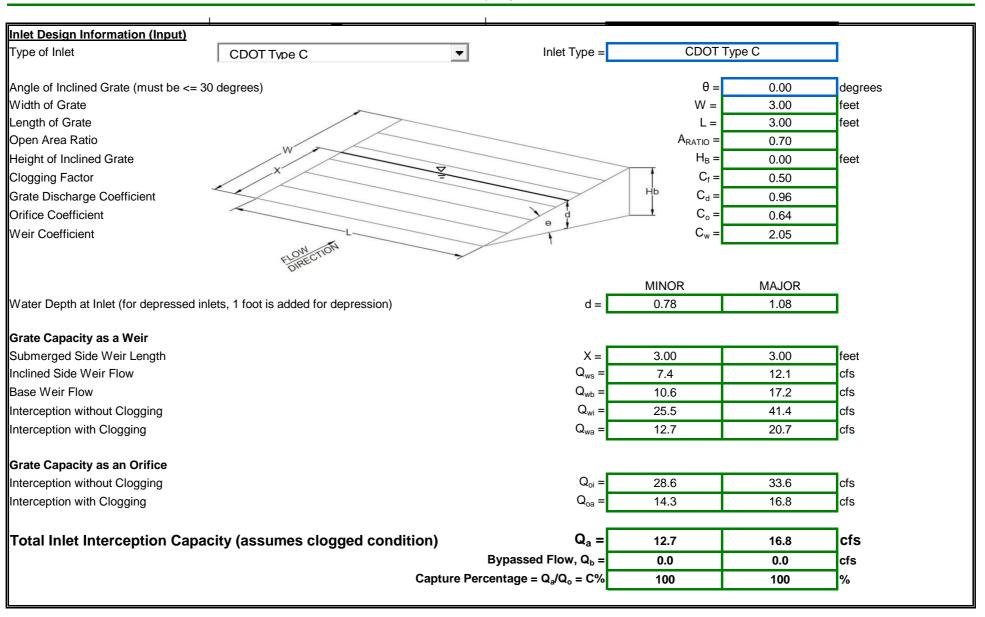
INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	5.6	inches
Grate Information	_	MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	7
Grate Flow Analysis (Calculated)	I	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on Modified HEC22 Method)	-	MINOR	MAJOR	-
nterception without Clogging	Q _{wi} =	N/A	N/A	cfs
nterception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	-
nterception without Clogging	Q _{oi} =	N/A	N/A	cfs
nterception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	
nterception without Clogging	Q _{mi} =	N/A	N/A	cfs
nterception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	•
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7
Clogging Factor for Multiple Units	Clog =	0.06	0.06	1
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
nterception without Clogging	Q _{wi} =	4.9	9.3	cfs
nterception with Clogging	Q _{wa} =	4.6	8.7	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)	-	MINOR	MAJOR	_
nterception without Clogging	Q _{oi} =	19.5	21.1	cfs
nterception with Clogging	Q _{oa} =	18.3	19.8	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
nterception without Clogging	Q _{mi} =	9.1	13.0	cfs
nterception with Clogging	Q _{ma} =	8.5	12.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.6	8.7	cfs
Resultant Street Conditions	Cuib	MINOR	MAJOR	
Fotal Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	12.5	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	- GROWIN			
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.30	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	0.53	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.91	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
č	Oldio			-
		MINOR	MAJOR	
Fotal Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.6	8.7	cfs
	u u			

Version 4.06 Released August 2018

AREA INLET IN A SWALE


Inlet	U3			
Т	6			
		This worksheet use		
		vegetal retardance		
	≜	determine Manning	j's n.	
1	d _{MAX}	-		
Z_{L} d Z_{R}		For more information		
		Section 7.2.3 of the	e USDCM.	
Analysis of Trapezoidal Grass-Lined Channel Using SCS Method		D	1	
IRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D or E	D	4	
Anning's n (Leave cell D16 blank to manually enter an n value)	n =	see details below		
Channel Invert Slope	S _O =	0.0050	ft/ft	
Bottom Width	B =	0.00	ft	
eft Side Slope	Z1 =	4.00	ft/ft	
Right Side Slope	Z2 =	4.00	ft/ft	
Check one of the following soil types:	Г	- Choose One:		7
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _{MAX})		C Non-Cohesive	2	
Non-Cohesive 5.0 fps 0.60		C Cohesive		
Cohesive 7.0 fps 0.80				
Paved N/A N/A	L	C Paved		
		Minor Storm	Major Storm	
Iax. Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	16.00	16.00	feet
Ax. Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	2.00	2.00	feet
Aaximum Channel Capacity Based On Allowable Top Width		Minor Storm	Major Storm	
Ax. Allowable Top Width	T _{MAX} =	16.00	16.00	ft
Vater Depth	d =	2.00	2.00	ft
-	. F			
Tow Area	A =	16.00	16.00	sq ft
Vetted Perimeter	P =	16.49	16.49	ft
lydraulic Radius	R =	0.97	0.97	ft
Ianning's n based on NRCS Vegetal Retardance	n =	0.043	0.043	
Tow Velocity	V =	2.40	2.40	fps
/elocity-Depth Product	VR =	2.33	2.33	ft^2/s
lydraulic Depth	D =	1.00	1.00	ft
Froude Number	Fr =	0.42	0.42	
Iax. Flow Based On Allowable Top Width	Q _T =	38.4	38.4	cfs
	-			
laximum Channel Capacity Based On Allowable Water Depth	_	Minor Storm	Major Storm	
Iax. Allowable Water Depth	d _{MAX} =	2.00	2.00	feet
op Width	Τ=	16.00	16.00	feet
Tow Area	A =	16.00	16.00	square feet
Vetted Perimeter	P =	16.49	16.49	feet
lydraulic Radius	R =	0.97	0.97	feet
Aanning's n based on NRCS Vegetal Retardance	n =	0.043	0.043	
Flow Velocity	11 = V =	2.40	2.40	fps
/elocity-Depth Product	v = VR =	2.40	2.40	ft^2/s
	VR = D =			
lydraulic Depth		1.00	1.00	feet
Froude Number	Fr =	0.42	0.42	
Iax. Flow Based On Allowable Water Depth	Q _d =	38.4	38.4	cfs
		Miner	M-1 0	
Allowable Channel Capacity Based On Channel Geometry	~ 5	Minor Storm	Major Storm	- ,
AINOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	38.4	38.4	cfs
IAJOR STORM Allowable Capacity is based on Depth Criterion	d _{allow} =	2.00	2.00	ft
Vater Depth in Channel Based On Design Peak Flow	-			_
Design Peak Flow	Q ₀ =	0.7	3.6	cfs
Vater Depth	d =	0.78	1.08	feet
op Width	Τ=	6.24	8.63	feet
Tow Area	A =	2.44	4.65	square feet
Vetted Perimeter	P =	6.44	8.89	feet
lydraulic Radius	R =	0.38	0.52	feet
Aanning's n based on NRCS Vegetal Retardance	n =	0.192	0.088	
	V =	0.29	0.000	fps
				() (
Tow Velocity (elocity-Depth Product		0.11	0.40	ft^2/s
/elocity-Depth Product	VR =	0 20	0 5 4	foot
-	D = Fr =	0.39 0.08	0.54 0.19	feet

Version 4.06 Released August 2018

AREA INLET IN A SWALE

Reunion Ridge Filing No. 2 - Preliminary Inlet Placing Calcs

Inlet D3

(Based on Regulated Criteria for Maximum Al	lowable Flow D	epth and Spre	ad)						
Reunion Ridge Filing No. 2 - Preliminary Inlet Placing Calcs Inlet D4									
TBACK L TCROWN									
SBACK W Tx W Tx SBACK W Tx W STREET CROWN	-								
, , , , , , , , , , , , , , , , , , ,									
Gutter Geometry (Enter data in the blue cells)			1.						
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft						
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft						
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.020	1						
Height of Curb at Gutter Flow Line	H _{CURB} =	4.50	inches						
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft						
Gutter Width	W =	2.00	ft						
Street Transverse Slope	S _X =	0.020	ft/ft						
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft						
Street Longitudinal Slope - Enter 0 for sump condition	S _O =	0.020	ft/ft						
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.016							
		Minor Storm	Major Storm						
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	17.0	17.0	ft					
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	4.5	6.9	inches					
Allow Flow Depth at Street Crown (leave blank for no)	-			check = yes					
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm						
Water Depth without Gutter Depression (Eq. ST-2)	y =	4.08	4.08	inches					
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	y = d _C =	2.0	2.0	inches					
Gutter Depression (d_c - (W * S_x * 12))	a =	1.51	1.51	inches					
Water Depth at Gutter Flowline	d =	5.59	5.59	inches					
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	15.0	15.0	ft					
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.350	0.350	1					
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	10.0	10.0	cfs					
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _W =	5.4	5.4	cfs					
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.3	0.3	cfs					
Maximum Flow Based On Allowable Spread	Q _T =	15.7	15.7	cfs					
Flow Velocity within the Gutter Section	V =	7.0	7.0	fps					
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	3.3	3.3						
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm						
Theoretical Water Spread	Т _{тн} =	12.5	22.5	ft					
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	Т _{х тн} =	10.5	20.5	ft					
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.475	0.263						
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	Q _{X TH} =	3.8	22.8	cfs					
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	3.8	22.1	cfs					
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _W =	3.4	8.1	cfs					
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs					
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	7.3	33.0	cfs					
Average Flow Velocity Within the Gutter Section	V =	5.9	8.3	fps					
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	2.2	4.8	4					
Slope-Based Depth Safety Reduction Factor for Major & Minor ($d \ge 6^{"}$) Storm Max Flow Based on Allowable Depth (Safety Factor Applied)	R =	1.00	0.83	ofe					
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d = d =	7.3	27.5	cfs					
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)	a = d _{CROWN} =	4.50 0.00	6.55 0.96	inches inches					
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm						

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

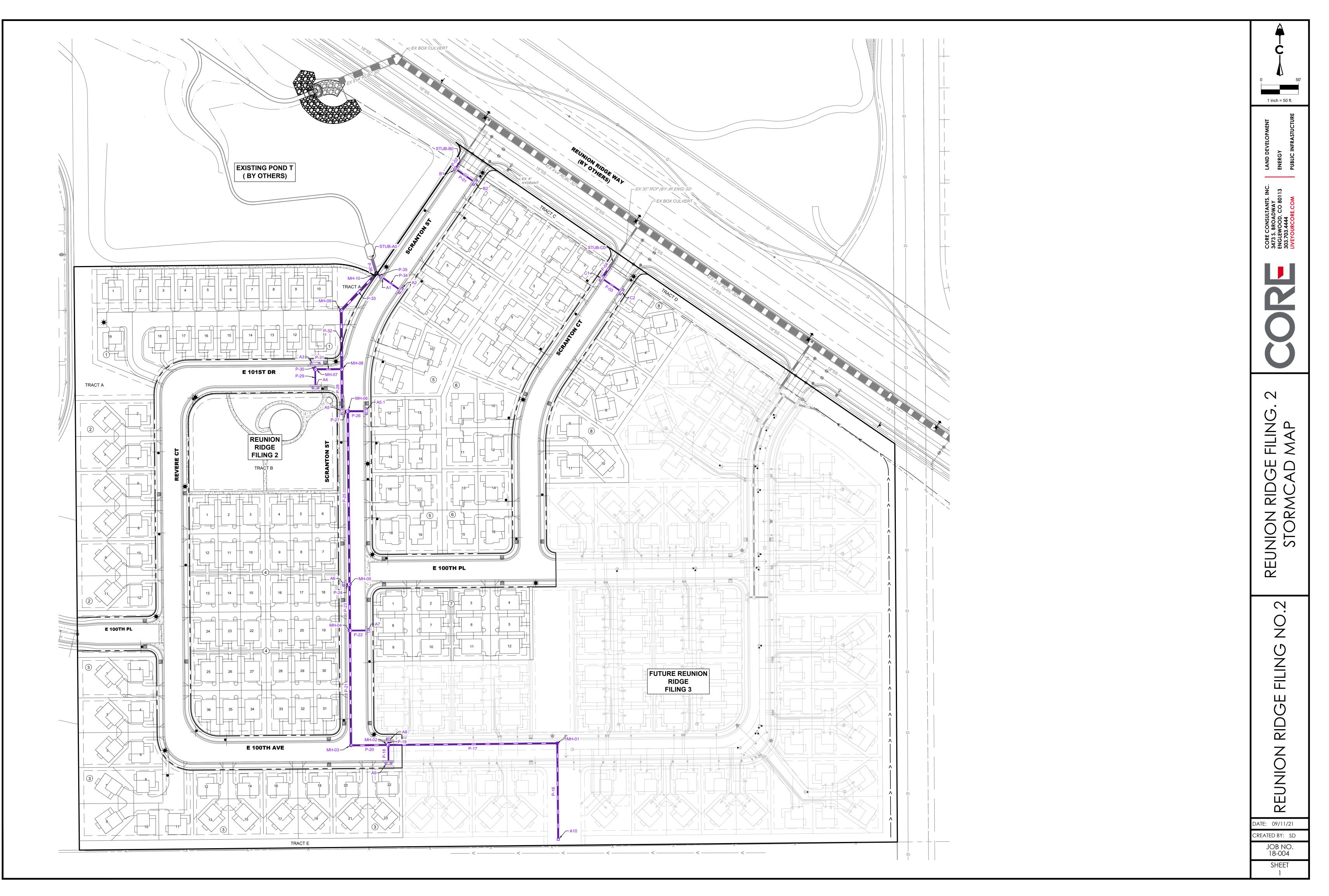
INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =		Curb Opening	7
Local Depression (additional to con	tinuous gutter depression 'a')	a _{LOCAL} =	4.5	4.5	inches
Total Number of Units in the Inlet (C	No =	2	2	-	
Length of a Single Unit Inlet (Grate		L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be gr		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit G	-	C _f -G =	N/A	N/A	
	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allow		· .	MINOR	MAJOR	-
	et (from Sheet Inlet Management)	Q ₀ =	1.5	4.0	cfs
Water Spread Width	· · · · · · · · · · · · · · · · · · ·	T =	5.7	9.5	ft
Water Depth at Flowline (outside of	local depression)	d =	2.9	3.8	inches
Water Depth at Street Crown (or at	T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	I	E _o =	0.845	0.601	7
Discharge outside the Gutter Section	on W, carried in Section T_x	Q _x =	0.2	1.6	cfs
Discharge within the Gutter Section	W	Q _w =	1.3	2.4	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section	W	A _W =	0.31	0.47	sq ft
Velocity within the Gutter Section W	I	V _W =	4.0	5.1	fps
Water Depth for Design Condition		d _{LOCAL} =	7.4	8.3	inches
Grate Analysis (Calculated)			MINOR	MAJOR	
Total Length of Inlet Grate Opening		L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{0-GRATE} =	N/A	N/A	1
Under No-Clogging Condition			MINOR	MAJOR	-
Minimum Velocity Where Grate Spl	ash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	1
Interception Rate of Side Flow		R _x =	N/A	N/A	1
Interception Capacity		Q _i =	N/A	N/A	cfs
Under Clogging Condition		_	MINOR	MAJOR	-
Clogging Coefficient for Multiple-un	it Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Gr	ate Inlet	GrateClog =	N/A	N/A	1
Effective (unclogged) Length of Mu	Itiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Spl	ash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	1
Interception Rate of Side Flow		R _x =	N/A	N/A	1
Actual Interception Capacity		Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be ap	oplied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening An	alysis (Calculated)		MINOR	MAJOR	
Equivalent Slope Se (based on grat	e carry-over)	S _e =	0.232	0.171	ft/ft
Required Length L_T to Have 100%	Interception	L _T =	4.87	9.26	ft
Under No-Clogging Condition			MINOR	MAJOR	_
Effective Length of Curb Opening of	r Slotted Inlet (minimum of L, L _T)	L =	4.87	9.26	ft
Interception Capacity		Q _i =	1.5	4.0	cfs
Inder Clogging Condition			MINOR	MAJOR	-
Clogging Coefficient		CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Cu	urb Opening or Slotted Inlet	CurbClog =	0.06	0.06	1
Effective (Unclogged) Length Actual Interception Capacity		L _e =	9.37	9.37	ft
		Q _a =	1.5	4.0	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a		Q _b =	0.0	0.0	cfs
Summary			MINOR	MAJOR	-
Total Inlet Interception Capacity		Q =	1.5	4.0	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	0.0	cfs
		~			-

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

(Based on Regulated Criteria for Maximum All	owable Flow D	epth and Spre	ad)							
Reunion Ridge Filing No. 2 - Preliminary Inlet Placing Calcs Inlet D5										
TBACK J. TCROWN										
SBACK W Tx SBACK W Tx CROWN	-									
Sw Sw										
Gutter Geometry (Enter data in the blue cells)										
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft							
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft							
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.020	J							
Height of Curb at Gutter Flow Line	H _{CURB} =	4.50	inches							
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft							
Gutter Width	W =	2.00	ft							
Street Transverse Slope	S _X =	0.020	ft/ft							
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft							
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.020	ft/ft							
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.016]							
		Minor Storm	Major Storm							
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	17.0	17.0	ft						
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	4.5	6.9	inches						
Allow Flow Depth at Street Crown (leave blank for no)			V	check = yes						
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm							
Water Depth without Gutter Depression (Eq. ST-2)	y =	4.08	4.08	inches						
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches						
Gutter Depression (d_c - (W * S_x * 12))	a =	1.51	1.51	inches						
Water Depth at Gutter Flowline	d =	5.59	5.59	inches						
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	15.0	15.0	ft						
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.350	0.350							
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	10.0	10.0	cfs						
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _W =	5.4	5.4	cfs						
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.3	0.3	cfs						
Maximum Flow Based On Allowable Spread	Q _T =	15.7	15.7	cfs						
Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth	V = V*d =	7.0	7.0 3.3	fps						
	1 4 -	0.0	0.0	4						
Maximum Capacity for 1/2 Street based on Allowable Depth	- F	Minor Storm	Major Storm	٦.						
Theoretical Water Spread	Т _{тн} = т –	12.5	22.5	ft +						
Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	Т _{х тн} = Е _о =	10.5	20.5	ft						
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. S1-7) Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	⊏ ₀ = Q _{X TH} =	0.475 3.8	0.263 22.8	cfs						
Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN})	$Q_{X TH} = Q_X =$	3.8	22.8	cfs						
Discharge within the Gutter Section W ($Q_d - Q_X$)	Q _X =	3.4	8.1	cfs						
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	2.7	cfs						
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	7.3	33.0	cfs						
Average Flow Velocity Within the Gutter Section	V =	5.9	8.3	fps						
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	2.2	4.8	1						
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R =	1.00	0.83	1						
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	7.3	27.5	cfs						
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	4.50	6.55	inches						
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.00	0.96	inches						
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm							
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	7.3	27.5	cfs						


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)		MINOR MAJOR					
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening			
1 Local Depression (additional to cont	inuous gutter depression 'a')	a _{LOCAL} =	4.5	4.5	inches		
Total Number of Units in the Inlet (G	Grate or Curb Opening)	No =	2	2	-		
Length of a Single Unit Inlet (Grate	or Curb Opening)	L _o =	5.00	5.00	ft		
Width of a Unit Grate (cannot be gre	eater than W, Gutter Width)	W _o =	N/A	N/A	ft		
Clogging Factor for a Single Unit G	rate (typical min. value = 0.5)	C _f -G =	N/A	N/A			
Clogging Factor for a Single Unit Cu	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10			
Street Hydraulics: OK - Q < Allow	able Street Capacity'		MINOR	MAJOR	•		
Design Discharge for Half of Stree	et (from Sheet Inlet Management)	Q ₀ =	2.3	7.5	cfs		
Water Spread Width		Τ=	7.3	12.7	ft		
Water Depth at Flowline (outside of	local depression)	d =	3.3	4.6	inches		
Water Depth at Street Crown (or at	T _{MAX})	d _{CROWN} =	0.0	0.0	inches		
Ratio of Gutter Flow to Design Flow		E ₀ =	0.735	0.469	-		
Discharge outside the Gutter Sectio	n W, carried in Section T_x	Q _x =	0.6	4.0	cfs		
Discharge within the Gutter Section	W	Q _w =	1.7	3.5	cfs		
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs		
Flow Area within the Gutter Section	W	A _W =	0.38	0.59	sq ft		
Velocity within the Gutter Section W		V _W =	4.5	5.9	fps		
Water Depth for Design Condition		d _{LOCAL} =	7.8	9.1	inches		
Grate Analysis (Calculated)		LOOAL	MINOR	MAJOR			
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft		
Ratio of Grate Flow to Design Flow		$E_{o-GRATE} =$	N/A	N/A			
Under No-Clogging Condition		-0-GRATE	MINOR	MAJOR			
Minimum Velocity Where Grate Spla	ash-Over Begins	V _o =	N/A	N/A	fps		
Interception Rate of Frontal Flow		v₀ = R _f =	N/A	N/A	100		
Interception Rate of Side Flow		$R_x =$	N/A	N/A	-		
Interception Capacity		$Q_i =$	N/A	N/A	cfs		
Under Clogging Condition		Q _i –	MINOR	MAJOR	013		
Clogging Coefficient for Multiple-uni	t Grate Inlet	GrateCoef =	N/A	N/A	7		
Clogging Factor for Multiple-unit Gra		GrateClog =	N/A	N/A	-		
Effective (unclogged) Length of Mul			N/A	N/A N/A	ft		
Minimum Velocity Where Grate Spla	-	L _e = V _o =	N/A	N/A	fps		
			N/A	N/A N/A	ips		
Interception Rate of Frontal Flow Interception Rate of Side Flow		R _f = R _x =		N/A N/A			
			N/A				
Actual Interception Capacity	plied to outh oppning or poyt d/o inlot)	Q _a =	N/A	N/A	cfs		
	plied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs		
Curb or Slotted Inlet Opening Ana		с Г	MINOR	MAJOR	£1/£1		
Equivalent Slope S _e (based on grate		S _e =	0.204	0.137	ft/ft		
Required Length L_T to Have 100% I	nterception	L _T =	6.45	14.14	ft		
Under No-Clogging Condition		. г	MINOR	MAJOR	٦.		
Effective Length of Curb Opening of	r Slotted Inlet (minimum of L, L_T)	L =	6.45	10.00	ft		
Interception Capacity		Q _i =	2.3	6.7	cfs		
Under Clogging Condition		-	MINOR	MAJOR	_		
Clogging Coefficient		CurbCoef =	1.25	1.25	4		
Clogging Factor for Multiple-unit Cu	rb Opening or Slotted Inlet	CurbClog =	0.06	0.06	4		
Effective (Unclogged) Length		L _e =	9.37	9.37	ft		
Actual Interception Capacity		Q _a =	2.3	6.6	cfs		
Carry-Over Flow = Q _{b(GRATE)} -Q _a		Q _b =	0.0	0.9	cfs		
Summary			MINOR	MAJOR			
Total Inlet Interception Capacity		Q =	2.3	6.6	cfs		
Total Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	0.9	cfs		
Capture Percentage = Q_a/Q_o =		C% =	100	88	%		

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

5-Year Conduit Table - Time: 0.00 hours

Label	Start Node	Stop Node	Invert (Start) (ft)	Invert (Stop) (ft)	Length (ft)	Slope (ft/ft)	Dia (in)	Mann. (n)	Flow (cfs)	Vel (ft/s)	Depth (ft)	Cap. (cfs)	HGL (In) (ft)	HGL (Out) (ft)
P-01	INLET B2	INLET B1	5,127.43	5,127.29	34.0	0.004	18.0	0.016	1.30	2.51	0.82	5.40	5,128.13	5,128.12
P-02	INLET B1	STUB B0	5,127.02	5,127.00	11.8	0.002	18.0	0.016	1.70	2.11	0.49	3.84	5,127.62	5,127.49
P-03	INLET C2	INLET C1	, 5,128.31	5,128.15	34.1	0.005	18.0	0.016	2.19	3.07	0.97	5.85	, 5,129.15	, 5,129.12
P-04	INLET C1	STUB C0	5,127.95	5,127.82	26.5	0.005	30.0	0.016	3.72	3.50	0.63	23.56	5,128.62	5,128.45
P-16	INLET A10	MH-01	5,134.40	5,133.79	154.3	0.004	24.0	0.016	0.84	2.15	0.90	11.58	5,134.78	5,134.69
P-17	MH-01	MH-02	5,133.69	5,132.64	271.6	0.004	24.0	0.016	0.82	2.11	1.52	11.41	5,134.19	5,134.16
P-18	INLET A9	MH-02	5,135.34	5,135.21	27.0	0.005	18.0	0.016	2.21	3.15	0.56	6.03	5,135.97	5,135.77
P-19	INLET A8	MH-02	5,135.24	5,135.21	7.0	0.005	18.0	0.016	0.61	2.19	0.29	6.03	5,135.56	5,135.50
P-20	MH-02	MH-03	5,132.54	5,132.30	60.0	0.004	24.0	0.016	2.69	3.01	1.35	11.62	5,133.66	5,133.64
P-21	MH-03	MH-04	5,132.20	5,131.46	184.5	0.004	30.0	0.016	2.67	2.94	1.66	21.08	5,133.14	5,133.12
P-22	INLET A7	MH-04	5,133.11	5,132.90	27.0	0.008	18.0	0.016	0.70	2.63	0.31	7.41	5,133.42	5,133.21
P-23	MH-04	MH-05	5,131.36	5,130.84	74.5	0.007	30.0	0.016	2.96	3.69	1.78	27.84	5,132.62	5,132.62
P-24	INLET A6	MH-05	5,130.94	5,130.84	7.0	0.014	18.0	0.016	3.27	1.85	1.78	10.20	5,132.63	5,132.62
P-25	MH-05	MH-06	5,130.74	5,129.21	277.9	0.006	30.0	0.016	4.93	3.93	2.86	24.72	5,132.12	5,132.07
P-26	INLET A5.1	MH-06	5,130.83	5,130.69	27.2	0.005	24.0	0.016	3.48	3.52	1.38	13.10	5,132.08	5,132.07
P-27	MH-06	INLET A5	5,130.69	5,130.65	6.8	0.005	36.0	0.016	7.36	4.21	0.85	38.61	5,131.57	5,131.51
P-28	INLET A5	MH-08	5,129.11	5,128.80	62.9	0.005	36.0	0.016	8.30	4.33	1.40	38.32	5,130.23	5,130.20
P-29	INLET A4	MH-07	5,129.00	5,128.87	27.0	0.005	18.0	0.016	1.00	0.56	1.84	6.03	5,130.71	5,130.71
P-30	MH-07	INLET A3	5,128.87	5,128.90	7.0	-0.005	18.0	0.016	2.70	1.53	1.84	6.03	5,130.71	5,130.71
P-31	MH-07	MH-08	5,128.67	5,128.48	42.8	0.004	24.0	0.016	3.52	3.31	1.71	11.93	5,130.21	5,130.20
P-32	MH-08	MH-09	5,128.60	5,128.13	94.0	0.005	36.0	0.016	11.00	4.68	1.40	38.32	5,129.70	5,129.52
P-33	MH-09	MH-10	5,127.93	5,127.51	82.4	0.005	36.0	0.016	10.92	4.67	1.05	38.32	5,129.02	5,128.56
P-34	INLET A2	INLET A1	5,129.04	5,128.87	34.0	0.005	18.0	0.016	1.43	2.80	0.45	6.03	5,129.54	5,129.32
P-35	INLET A1	MH-10	5,126.39	5,126.33	11.2	0.005	18.0	0.016	2.60	1.47	1.62	6.03	5,127.96	5,127.95
P-36	MH-10	STUB A0	5,126.13	5,126.01	24.7	0.005	36.0	0.016	12.37	4.83	1.12	38.32	5,127.31	5,127.13

5-Year

Manhole Table - Time: 0.00 hours										
Label	Elevatio	Elevation	Flow	Headlos	Hydraulic	Hydraulic	Headloss	Notes		
	n (Rim)	(Invert)	(Total	s Coeff.	Grade	Grade	Method			
	(ft)	(ft)	Out)		Line (In)	Line				
			(cfs)		(ft)	(Out)				
						(ft)				
MH-01	5,142.12	5,133.69	0.82	1.320	5,134.69	5,134.19	Standard	4' DIA MH		
MH-03	5,140.08	5,132.20	2.67	1.320	5,133.64	5,133.14	Standard	4' DIA MH		
MH-02	5,139.73	5,132.54	2.69	1.520	5,134.16	5,133.66	Standard	5' DIA MH		
MH-04	5,137.89	5,131.36	2.96	1.020	5,133.12	5,132.62	Standard	5' DIA MH		
MH-05	5,137.14	5,130.74	4.93	1.020	5,132.62	5,132.12	Standard	5' DIA MH		
MH-06	5,134.84	5,129.21	7.36	1.520	5,132.07	5,131.57	Standard	5' DIA MH		
MH-09	5,134.27	5,127.93	10.92	0.400	5,129.52	5,129.02	Standard	5' DIA MH		
MH-08	5,134.11	5,128.36	11.00	1.020	5,130.20	5,129.70	Standard	5' DIA MH		
MH-07	5,133.62	5,128.67	3.52	1.520	5,130.71	5,130.21	Standard	5' DIA MH		
MH-10	5,133.28	5,126.13	12.37	1.770	5,127.95	5,127.31	Standard	5' DIA MH		

5-Year

Catch Basin Table - Time: 0.00 hours

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Headlos s Coeff.	Flow (Total) (cfs)	HGL (In) (ft)	HGL (Out) (ft)	Notes	Inlet Location
INLET A1	5,133.11	5,126.39	0.050	1.22	5,128.46	5,127.96	5' TYPE R INLET	In Sag
INLET A2	5,133.11	5,129.04	0.050	1.43	5,130.04	5,129.54	10' TYPE R INLET	In Sag
INLET A3	5,133.69	5,128.90	0.050	2.70	5,131.21	5,130.71	15' TYPE R INLET	In Sag
INLET A4	5,133.69	5,129.00	0.050	1.00	5,131.21	5,130.71	10' TYPE R INLET	In Sag
INLET A5	5,134.91	5,129.11	1.770	1.18	5,130.73	5,130.23	10' TYPE R INLET (MODIFIED)	In Sag
INLET A5.1	5,134.91	5,130.83	0.050	3.48	5,132.58	5,132.08	10' TYPE R INLET	In Sag
INLET A6	5,137.21	5,130.94	0.050	3.27	5,133.13	5,132.63	5' TYPE R INLET	In Sag
INLET A7	5,137.96	5,133.11	0.050	0.70	5,133.92	5,133.42	5' TYPE R INLET	In Sag
INLET A8	5,139.80	5,135.24	0.050	0.61	5,136.06	5,135.56	5' TYPE R INLET	In Sag
INLET A9	5,139.80	5,135.34	0.050	2.21	5,136.47	5,135.97	10' TYPE R INLET	In Sag
INLET A10	5,137.17	5,134.40	0.050	0.84	5,135.28	5,134.78	TYPE C INLET	In Sag
INLET B1	5,131.91	5,127.02	1.320	0.49	5,128.12	5,127.62	5' TYPE R INLET	In Sag
INLET B2	5,131.91	5,127.43	0.050	1.30	5,128.63	5,128.13	10' TYPE R INLET	In Sag
INLET C1	5,133.30	5,127.95	1.320	2.11	5,129.12	5,128.62	10' TYPE R INLET (MODIFIED)	In Sag
INLET C2	5,133.28	5,128.31	0.050	2.19	5,129.65	5,129.15	10' TYPE R INLET	In Sag

5-Year

Catchment Table - Time: 0.00 hours

Label	Outflow Element	Area (acres)	Runoff Coefficient	Time of C (min)	CA (acres)	Intensity (in/h)	Flow (cfs)
A1	INLET A1	0.660	0.560	8.100	0.370	3.277	1.22
A2	INLET A2	1.080	0.410	8.600	0.443	3.208	1.43
A3	INLET A3	2.490	0.420	14.800	1.046	2.559	2.70
A4	INLET A4	1.000	0.400	15.900	0.400	2.473	1.00
A5	INLET A5	1.280	0.390	17.600	0.499	2.352	1.18
A5.1	INLET A5.1	2.530	0.530	14.600	1.341	2.575	3.48
A6	INLET A6	1.750	0.580	8.700	1.015	3.194	3.27
A7	INLET A7	0.260	0.700	5.000	0.182	3.799	0.70
A8	INLET A8	0.190	0.840	5.000	0.160	3.799	0.61
A9	INLET A9	1.660	0.470	12.000	0.780	2.811	2.21
A10	INLET A10	1.470	0.260	20.200	0.382	2.192	0.84
B1	INLET B1	0.150	0.860	5.000	0.129	3.799	0.49
B2	INLET B2	0.980	0.420	9.100	0.412	3.142	1.30
C1	INLET C1	1.310	0.500	8.700	0.655	3.194	2.11
C2	INLET C2	1.980	0.470	17.800	0.931	2.339	2.19

100-Year Conduit Table - Time: 0.00 hours

Label	Start Node	Stop Node	Invert (Start) (ft)	Invert (Stop)	Length (ft)	Slope (ft/ft)	Dia (in)	Mann. (n)	Flow (cfs)	Vel (ft/s)	Depth (ft)	Cap. (cfs)	HGL (In) (ft)	HGL (Out) (ft)
D 01				(ft)	24.0	0.004	10.0	0.010	4 71	2.44	1.22	F 40	F 120 71	
P-01	INLET B2	INLET B1	5,127.43	5,127.29	34.0	0.004	18.0	0.016	4.71	3.44	1.33	5.40	5,128.71	5,128.63
P-02	INLET B1	STUB B0	5,127.02	5,127.00	11.8	0.002	18.0	0.016	5.64	3.19	0.92	3.84	5,128.13	5,127.92
P-03	INLET C2	INLET C1	5,128.31	5,128.15	34.1	0.005	18.0	0.016	7.39	4.18	1.57	5.85	5,129.98	5,129.73
P-04	INLET C1	STUB C0	5,127.95	5,127.82	26.5	0.005	30.0	0.016	12.37	4.86	1.18	23.56	5,129.23	5,129.00
P-16	INLET A10	MH-01	5,134.40	5,133.79	154.3	0.004	24.0	0.016	4.33	1.38	2.72	11.58	5,136.59	5,136.51
P-17	MH-01	MH-02	5,133.69	5,132.64	271.6	0.004	24.0	0.016	4.13	1.31	3.23	11.41	5,136.01	5,135.87
P-18	INLET A9	MH-02	5,135.34	5,135.21	27.0	0.005	18.0	0.016	7.43	4.20	1.06	6.03	5,136.63	5,136.26
P-19	INLET A8	MH-02	5,135.24	5,135.21	7.0	0.005	18.0	0.016	1.46	2.81	0.67	6.03	5,135.88	5,135.87
P-20	MH-02	MH-03	5,132.54	5,132.30	60.0	0.004	24.0	0.016	9.66	3.07	2.91	11.62	5,135.37	5,135.21
P-21	MH-03	MH-04	5,132.20	5,131.46	184.5	0.004	30.0	0.016	9.59	1.95	3.09	21.08	5,134.71	5,134.55
P-22	INLET A7	MH-04	5,133.11	5,132.90	27.0	0.008	18.0	0.016	1.84	3.48	1.65	7.41	5,134.57	5,134.55
P-23	MH-04	MH-05	5,131.36	5,130.84	74.5	0.007	30.0	0.016	10.17	2.07	3.14	27.84	5,134.05	5,133.98
P-24	INLET A6	MH-05	5,130.94	5,130.84	7.0	0.014	18.0	0.016	9.53	5.39	3.14	10.20	5,134.07	5,133.98
P-25	MH-05	MH-06	5,130.74	5,129.21	277.9	0.006	30.0	0.016	15.51	3.16	3.65	24.72	5,133.48	5,132.86
P-26	INLET A5.1	MH-06	5,130.83	5,130.69	27.2	0.005	24.0	0.016	10.83	3.45	2.17	13.10	5,132.95	5,132.86
P-27	MH-06	INLET A5	5,130.69	5,130.65	6.8	0.005	36.0	0.016	22.52	5.67	1.54	38.61	5,132.30	5,132.20
P-28	INLET A5	MH-08	5,129.11	5,128.80	62.9	0.005	36.0	0.016	25.88	5.82	2.77	38.32	5,131.67	5,131.56
P-29	INLET A4	MH-07	5,129.00	, 5,128.87	27.0	0.005	18.0	0.016	3.71	2.10	3.41	6.03	5,132.33	5,132.28
P-30	MH-07	INLET A3	, 5,128.87	5,128.90	7.0	-0.005	18.0	0.016	9.73	5.51	3.41	6.03	5,132.37	5,132.28
P-31	MH-07	MH-08	, 5,128.67	, 5,128.48	42.8	0.004	24.0	0.016	13.01	4.14	3.08	11.93	, 5,131.78	5,131.56
P-32	MH-08	MH-09	5,128.60	5,128.13	94.0	0.005	36.0	0.016	35.16	6.15	2.53	38.32	5,131.02	5,130.65
P-33	MH-09	MH-10	5,127.93	5,127.51	82.4	0.005	36.0	0.016	34.98	6.14	1.94	38.32	5,130.15	5,129.45
P-34	INLET A2	INLET A1	5,129.04	5,128.87	34.0	0.005	18.0	0.016	5.21	3.84	0.94	6.03	5,130.08	5,129.81
P-35	INLET A1	MH-10	5,126.39	5,126.33	11.2	0.005	18.0	0.016	8.71	4.93	2.86	6.03	5,129.31	5,129.20
P-36	MH-10	STUB A0	5,126.13	5,126.01	24.7	0.005	36.0	0.016	39.62	6.16	2.07	38.32	5,128.44	5,128.08

100-Year

Label	Elevatio n (Rim) (ft)	Elevation (Invert) (ft)	Flow (Total Out) (cfs)	Headlos s Coeff.	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Notes
MH-01	5,142.12	5,133.69	4.13	1.320	5,136.51	5,136.01	Standard	4' DIA MH
MH-03	5,140.08	5,132.20	9.59	1.320	5,135.21	5,134.71	Standard	4' DIA MH
MH-02	5,139.73	5,132.54	9.66	1.520	5,135.87	5,135.37	Standard	5' DIA MH
MH-04	5,137.89	5,131.36	10.17	1.770	5,134.55	5,134.05	Standard	5' DIA MH
MH-05	5,137.14	5,130.74	15.51	1.020	5,133.98	5,133.48	Standard	5' DIA MH
MH-06	5,134.84	5,129.21	22.52	1.020	5,132.86	5,132.30	Standard	5' DIA MH
MH-09	5,134.27	5,127.93	34.98	0.400	5,130.65	5,130.15	Standard	5' DIA MH
MH-08	5,134.11	5,128.36	35.16	1.020	5,131.56	5,131.02	Standard	5' DIA MH
MH-07	5,133.62	5,128.67	13.01	1.520	5,132.28	5,131.78	Standard	5' DIA MH
MH-10	5,133.28	5,126.13	39.62	1.020	5,129.20	5,128.44	Standard	5' DIA MH

Manhole Table - Time: 0.00 hours

100-Year

Catch Basin Table - Time: 0.00 hours

Label	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Headlos s Coeff.	Flow (Total) (cfs)	HGL (In) (ft)	HGL (Out) (ft)	Notes	Inlet Location
INLET A1	5,133.11	5,126.39	0.050	3.63	5,129.81	5,129.31	5' TYPE R INLET	In Sag
INLET A2	5,133.11	5,129.04	0.050	5.21	5,130.58	5,130.08	10' TYPE R INLET	In Sag
INLET A3	5,133.69	5,128.90	0.050	9.73	5,132.87	5,132.37	15' TYPE R INLET	In Sag
INLET A4	5,133.69	5,129.00	0.050	3.71	5,132.83	5,132.33	10' TYPE R INLET	In Sag
INLET A5	5,134.91	5,129.11	1.770	4.46	5,132.17	5,131.67	10' TYPE R INLET (MODIFIED)	In Sag
INLET A5.1	5,134.91	5,130.83	0.050	10.83	5,133.45	5,132.95	10' TYPE R INLET	In Sag
INLET A6	5,137.21	5,130.94	0.050	9.53	5,134.57	5,134.07	5' TYPE R INLET	In Sag
INLET A7	5,137.96	5,133.11	0.050	1.84	5,135.07	5,134.57	5' TYPE R INLET	In Sag
INLET A8	5,139.80	5,135.24	0.050	1.46	5,136.38	5,135.88	5' TYPE R INLET	In Sag
INLET A9	5,139.80	5,135.34	0.050	7.43	5,137.13	5,136.63	10' TYPE R INLET	In Sag
INLET A10	5,137.17	5,134.40	0.050	4.33	5,137.09	5,136.59	TYPE C INLET	In Sag
INLET B1	5,131.91	5,127.02	1.320	1.17	5,128.63	5,128.13	5' TYPE R INLET	In Sag
INLET B2	5,131.91	5,127.43	0.050	4.71	5,129.21	5,128.71	10' TYPE R INLET	In Sag
INLET C1	5,133.30	5,127.95	1.320	6.85	5,129.73	5,129.23	10' TYPE R INLET (MODIFIED)	In Sag
INLET C2	5,133.28	5,128.31	0.050	7.39	5,130.48	5,129.98	10' TYPE R INLET	In Sag

100-Year

Catchment Table - Time: 0.00 hours

Label	Outflow Element	Area (acres)	Runoff Coefficient	Time of C (min)	CA (acres)	Intensity (in/h)	Flow (cfs)
A1	INLET A1	0.655	0.744	8.111	0.487	7.399	3.63
A2	INLET A2	1.080	0.660	8.600	0.713	7.246	5.21
A3	INLET A3	2.490	0.670	14.760	1.668	5.787	9.73
A4	INLET A4	1.000	0.660	15.940	0.660	5.579	3.71
A5	INLET A5	1.280	0.650	17.600	0.832	5.314	4.46
A5.1	INLET A5.1	2.530	0.730	14.600	1.847	5.816	10.83
A6	INLET A6	1.750	0.750	8.740	1.313	7.203	9.53
A7	INLET A7	0.260	0.820	5.000	0.213	8.581	1.84
A8	INLET A8	0.190	0.890	5.000	0.169	8.581	1.46
A9	INLET A9	1.660	0.700	12.030	1.162	6.343	7.43
A10	INLET A10	1.470	0.590	20.200	0.867	4.951	4.33
B1	INLET B1	0.150	0.900	5.000	0.135	8.581	1.17
B2	INLET B2	0.980	0.670	9.050	0.657	7.111	4.71
C1	INLET C1	1.310	0.720	8.740	0.943	7.203	6.85
C2	INLET C2	1.980	0.700	17.770	1.386	5.288	7.39

APPENDIX C

REFERENCE EXCERPTS

PRELIMINARY DRAINAGE REPORT FOR REUNION VILLAGE 9

May 20, 2020

Prepared For: **Reunion Metropolitan District** 17910 East Parkside Drive North Commerce City, Colorado 80022 Contact: Matt Urkoski

Prepared By: JR ENGINEERING, LLC 7200 S Alton Way, Suite C400 Centennial, Colorado 80112 (303) 740-9393 Contact: Aaron Clutter, PE

DocuSigned by:

Brent Soderlin 6/16/2020

City of Confineering Approval

Project No. 14421.29

X:\1440000.all\1442129\Word\Reports\Preliminary Drainage Report_1442129_Preliminary Drainage Report_Reunion Village 9.docx

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Commerce City, Colorado, USA* Latitude: 39.8898°, Longitude: -104.7832° Elevation: 5225.4 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

Duration				Average	recurrence	interval (ye	ars)			
Juration	1	2	5	10	25	50	100	200	500	1000
5-min	0.226 (0.178-0.289)	0.277 (0.218-0.355)	0.372 (0.291-0.477)	0.461 (0.358-0.593)	0.598 (0.457-0.816)	0.716 (0.531-0.985)	0.845 (0.605-1.19)	0.986 (0.678-1.43)	1.19 (0.787-1.76)	1.36 (0.869-2.02
10-min	0.332 (0.260-0.424)	0.406 (0.319-0.520)	0.545 (0.425-0.698)	0.674 (0.524-0.869)	0.876 (0.669-1.20)	1.05 (0.778-1.44)	1.24 (0.886-1.74)	1.44 (0.993-2.09)	1.74 (1.15-2.58)	1.99 (1.27-2.96)
15-min	0.404 (0.317-0.517)	0.496 (0.388-0.634)	0.664 (0.519-0.851)	0.823 (0.639-1.06)	1.07 (0.815-1.46)	1.28 (0.949-1.76)	1.51 (1.08-2.12)	1.76 (1.21-2.54)	2.13 (1.41-3.15)	2.42 (1.55-3.61)
30-min	0.562 (0.441-0.718)	0.685 (0.537-0.876)	0.913 (0.714-1.17)	1.13 (0.876-1.45)	1.46 (1.12-1.99)	1.75 (1.30-2.40)	2.06 (1.47-2.90)	2.40 (1.65-3.47)	2.89 (1.91-4.29)	3.30 (2.11-4.91)
60-min	0.692 (0.543-0.884)	0.843 (0.661-1.08)	1.12 (0.877-1.44)	1.39 (1.08-1.78)	1.79 (1.37-2.45)	2.14 (1.59-2.95)	2.53 (1.81-3.56)	2.95 (2.03-4.26)	3.55 (2.35-5.27)	4.05 (2.59-6.03)
2-hr	0.822 (0.650-1.04)	1.00 (0.790-1.27)	1.33 (1.05-1.69)	1.64 (1.29-2.10)	2.13 (1.64-2.87)	2.54 (1.90-3.46)	3.00 (2.17-4.18)	3.49 (2.42-5.00)	4.21 (2.81-6.18)	4.80 (3.10-7.07)
3-hr	0.891 (0.708-1.12)	1.08 (0.859-1.36)	1.44 (1.14-1.82)	1.77 (1.39-2.25)	2.28 (1.77-3.07)	2.73 (2.05-3.69)	3.21 (2.33-4.45)	3.74 (2.61-5.32)	4.51 (3.03-6.57)	5.14 (3.34-7.52)
6-hr	1.06 (0.848-1.32)	1.27 (1.02-1.59)	1.66 (1.32-2.08)	2.03 (1.61-2.55)	2.59 (2.02-3.45)	3.08 (2.33-4.12)	3.61 (2.64-4.94)	4.19 (2.95-5.88)	5.02 (3.40-7.23)	5.71 (3.74-8.25)
12-hr	1.31 (1.05-1.62)	1.54 (1.25-1.91)	1.98 (1.59-2.46)	2.38 (1.90-2.97)	3.00 (2.35-3.93)	3.52 (2.69-4.65)	4.08 (3.02-5.52)	4.70 (3.34-6.52)	5.58 (3.81-7.94)	6.30 (4.18-9.02)
24-hr	1.57 (1.28-1.93)	1.87 (1.52-2.29)	2.38 (1.93-2.93)	2.84 (2.29-3.51)	3.51 (2.77-4.53)	4.07 (3.13-5.30)	4.66 (3.46-6.21)	5.29 (3.78-7.23)	6.17 (4.25-8.65)	6.87 (4.60-9.72)
2-day	1.81 (1.49-2.20)	2.18 (1.79-2.65)	2.80 (2.29-3.41)	3.32 (2.70-4.06)	4.06 (3.20-5.14)	4.65 (3.59-5.96)	5.25 (3.92-6.88)	5.87 (4.22-7.89)	6.71 (4.65-9.26)	7.37 (4.98-10.3)
3-day	1.98 (1.63-2.39)	2.35 (1.94-2.84)	2.97 (2.44-3.60)	3.50 (2.86-4.26)	4.25 (3.37-5.35)	4.85 (3.76-6.18)	5.46 (4.11-7.12)	6.10 (4.41-8.15)	6.96 (4.86-9.55)	7.64 (5.19-10.6)
4-day	2.11 (1.75-2.54)	2.47 (2.05-2.98)	3.09 (2.55-3.73)	3.62 (2.97-4.39)	4.38 (3.49-5.49)	4.98 (3.88-6.33)	5.61 (4.23-7.28)	6.26 (4.55-8.33)	7.15 (5.01-9.76)	7.85 (5.36-10.8)
7-day	2.40 (2.00-2.86)	2.78 (2.32-3.33)	3.43 (2.85-4.12)	3.99 (3.29-4.80)	4.78 (3.83-5.94)	5.40 (4.24-6.80)	6.05 (4.60-7.78)	6.72 (4.92-8.86)	7.63 (5.39-10.3)	8.34 (5.74-11.4)
10-day	2.65 (2.22-3.15)	3.06 (2.56-3.64)	3.75 (3.13-4.47)	4.33 (3.59-5.19)	5.15 (4.15-6.36)	5.79 (4.57-7.24)	6.45 (4.93-8.24)	7.13 (5.24-9.33)	8.05 (5.71-10.8)	8.75 (6.06-11.9)
20-day	3.39 (2.87-4.00)	3.87 (3.27-4.56)	4.65 (3.91-5.50)	5.30 (4.44-6.29)	6.20 (5.03-7.56)	6.90 (5.48-8.51)	7.60 (5.85-9.58)	8.31 (6.16-10.7)	9.25 (6.62-12.2)	9.97 (6.97-13.4)
30-day	3.99 (3.39-4.68)	4.54 (3.85-5.32)	5.42 (4.59-6.38)	6.15 (5.17-7.26)	7.15 (5.82-8.63)	7.90 (6.31-9.67)	8.65 (6.70-10.8)	9.41 (7.01-12.1)	10.4 (7.48-13.7)	11.1 (7.83-14.9)
45-day	4.71 (4.02-5.49)	5.37 (4.58-6.26)	6.42 (5.46-7.51)	7.28 (6.15-8.54)	8.43 (6.89-10.1)	9.29 (7.45-11.3)	10.1 (7.88-12.6)	11.0 (8.21-13.9)	12.0 (8.70-15.7)	12.8 (9.07-17.0)
60-day	5.29 (4.53-6.14)	6.06	7.29	8.28	9.59	10.6	11.5	12.4	13.6	14.4

 $|^1$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PRELIMINARY DRAINAGE REPORT FOR REUNION VILLAGE 9 - CUHP INPUT Summary of CUHP Input Parameters (Version 2.0.0)

		s (version 2.0.0)						Depressio	n Storage	Horton's	Infiltration Pa	rameters	DCIA	Level and Fra	ctions	
				Dist. to								Decay		Dir. Con'ct	Receiv.	
			Area	Centroid	Length	Slope	Percent	Pervious	Imperv.	Initial Rate	Final Rate	Coeff.		Imperv.	Perv.	Percent Eff.
Catchment Name/ID	SWMM Node/ID	Raingage Name/ID	(sq.mi.)	(miles)	(miles)	(ft./ft.)	Imperv.	(inches)	(inches)	(in./hr.)	(in.hr.)	(1/sec.)	DCIA Level	Fraction	Fraction	Imperv.
9OS9	S_90S9	REUNION	0.004	0.105	0.224	0.010	69.1	0.35	0.10	4.50	0.60	0.0018	0.00	0.92	0.30	67.28
9058	S_90S8	REUNION	0.008	0.078	0.169	0.020	64.1	0.35	0.10	4.50	0.60	0.0018	0.00	0.91	0.28	62.21
90S7	S_90S7	REUNION	0.024	0.095	0.287	0.010	17.4	0.35	0.10	4.40	0.59	0.0018	0.00	0.35	0.12	14.41
9A0	S_9A0	REUNION	0.024	0.142	0.279	0.010	57.8	0.35	0.10	3.70	0.55	0.0018	0.00	0.89	0.26	55.89
9A5a	S_9A5a	REUNION	0.004	0.164	0.330	0.010	68.6	0.35	0.10	4.40	0.64	0.0017	0.00	0.92	0.30	66.69
9A5b	S_9A5b	REUNION	0.002	0.091	0.197	0.010	68.6	0.35	0.10	3.50	0.54	0.0018	0.00	0.92	0.30	67.01
9A5c	S_9A5c	REUNION	0.026	0.160	0.341	0.020	47.1	0.35	0.10	4.40	0.60	0.0018	0.00	0.84	0.22	44.66
9A5d	S_9A5d	REUNION	0.004	0.165	0.330	0.010	68.6	0.35	0.10	4.50	0.65	0.0017	0.00	0.92	0.30	66.66
9A4a	S_9A4a	REUNION	0.030	0.103	0.274	0.020	60.0	0.35	0.10	4.00	0.56	0.0018	0.00	0.90	0.27	58.17
9A4b	S_9A4b	REUNION	0.034	0.097	0.236	0.010	55.0	0.35	0.10	3.40	0.53	0.0018	0.00	0.88	0.25	53.11
9A3a	S_9A3a	REUNION	0.016	0.123	0.249	0.010	62.0	0.35	0.10	3.90	0.56	0.0018	0.00	0.90	0.28	60.22
9A3b	S_9A3b	REUNION	0.014	0.071	0.182	0.010	59.4	0.35	0.10	3.00	0.50	0.0018	0.00	0.90	0.27	57.78
9A2a	S_9A2a	REUNION	0.010	0.057	0.144	0.010	55.0	0.35	0.10	3.40	0.53	0.0018	0.00	0.88	0.25	53.11
9A2b	S_9A2b	REUNION	0.026	0.085	0.260	0.010	55.0	0.35	0.10	3.50	0.53	0.0018	0.00	0.88	0.25	53.09
9A2c	S_9A2c	REUNION	0.018	0.063	0.177	0.020	55.0	0.35	0.10	3.40	0.53	0.0018	0.00	0.88	0.25	53.11
90S2a	S_90S2a	REUNION	0.008	0.067	0.102	0.020	12.0	0.35	0.10	4.50	0.60	0.0018	0.00	0.24	0.11	9.43
9A7	S_9A7	REUNION	0.105	0.229	0.462	0.020	58.1	0.35	0.10	4.40	0.60	0.0018	0.00	0.89	0.26	56.05
9A6	S_9A6	REUNION	0.099	0.234	0.455	0.010	51.4	0.35	0.10	3.90	0.56	0.0018	0.00	0.86	0.24	49.30
9A1	S_9A1	REUNION	0.066	0.116	0.331	0.010	56.3	0.35	0.10	3.90	0.56	0.0018	0.00	0.88	0.26	54.29
9E2	S_9E2	REUNION	0.008	0.099	0.199	0.010	59.3	0.35	0.10	4.60	0.70	0.0015	0.00	0.90	0.27	56.95
9OS5	S_90S5	REUNION	0.006	0.077	0.246	0.020	2.0	0.35	0.10	4.80	0.81	0.0012	0.00	0.00	0.02	1.23
9OS6	S_90S6	REUNION	0.029	0.121	0.180	0.020	60.0	0.35	0.10	4.40	0.59	0.0018	0.00	0.90	0.27	58.05
90S10	S_90S10	REUNION	0.001	0.014	0.028	0.010	56.2	0.35	0.10	4.50	0.60	0.0018	0.00	0.88	0.25	54.03
9B4	S_9B4	REUNION	0.003	0.122	0.259	0.010	87.7	0.35	0.10	4.50	0.60	0.0018	0.00	0.96	0.36	86.56
9B3	S_9B3	REUNION	0.005	0.059	0.180	0.010	87.7	0.35	0.10	4.60	0.72	0.0015	0.00	0.96	0.36	86.36
9B2a	S_9B2a	REUNION	0.165	0.118	0.376	0.030	55.0	0.35	0.10	4.60	0.72	0.0015	0.00	0.88	0.25	52.38
9B2b	S_9B2b	REUNION	0.008	0.028	0.138	0.020	55.0	0.35	0.10	4.80	0.84	0.0011	0.00	0.88	0.25	51.82
9B1a	S_9B1a	REUNION	0.015	0.074	0.169	0.040	73.5	0.35	0.10	4.50	0.60	0.0018	0.00	0.93	0.31	71.75
9B1b	S_9B1b	REUNION	0.011	0.039	0.109	0.020	67.8	0.35	0.10	4.60	0.71	0.0015	0.00	0.92	0.29	65.59
9B0	S_9B0	REUNION	0.021	0.082	0.175	0.010	100.0	0.35	0.10	4.70	0.79	0.0013	0.00	1.00	0.00	100.00
9E5	S_9E5	REUNION	0.001	0.117	0.161	0.020	59.3	0.35	0.10	5.00	1.00	0.0007	0.00	0.90	0.27	56.39
9E4	S_9E4	REUNION	0.005	0.104	0.208	0.010	59.3	0.35	0.10	5.00	1.00	0.0007	0.00	0.90	0.27	56.39
9E3	S_9E3	REUNION	0.005	0.144	0.288	0.040	59.3	0.35	0.10	4.70	0.73	0.0014	0.00	0.90	0.27	56.81
90S1	S_90S1	REUNION	0.015	0.104	0.152	0.020	2.0	0.35	0.10	4.80	0.83	0.0012	0.00	0.04	0.02	1.24
9OS2b	S_9OS2b	REUNION	0.053	0.142	0.308	0.020	25.0	0.35	0.10	4.60	0.71	0.0015	0.00	0.50	0.15	21.06
90S2c	S_9OS2c	REUNION	0.006	0.047	0.112	0.030	55.0	0.35	0.10	4.80	0.80	0.0013	0.00	0.88	0.25	52.01
9OS4	S_90S4	REUNION	0.036	0.087	0.233	0.020	2.0	0.35	0.10	5.00	1.00	0.0007	0.00	0.04	0.02	1.24
9C2	S_9C2	REUNION	0.063	0.140	0.330	0.020	55.0	0.35	0.10	4.80	0.80	0.0012	0.00	0.88	0.25	51.91
9C1	S_9C1	REUNION	0.035	0.068	0.239	0.030	55.0	0.35	0.10	4.50	0.61	0.0018	0.00	0.88	0.25	52.77
9C0	S_9C0	REUNION	0.006	0.045	0.089	0.030	90.4	0.35	0.10	4.50	0.60	0.0018	0.00	0.96	0.37	89.46
9E6	S_9E6	REUNION	0.011	0.203	0.525	0.030	59.3	0.35	0.10	4.70	0.77	0.0013	0.00	0.90	0.27	56.66
9OS3	S_90S3	REUNION	0.037	0.573	1.161	0.010	2.0	0.35	0.10	4.80	0.82	0.0012	0.00	0.04	0.02	1.25
9101b	S_9101b	REUNION	0.035	0.091	0.318	0.030	55.0	0.35	0.10	4.80	0.84	0.0011	0.00	0.88	0.25	51.82
9101a	S_9101a	REUNION	0.007	0.019	0.092	0.090	59.3	0.35	0.10	5.00	1.00	0.0007	0.00	0.90	0.27	56.39
9F5	S_9F5	REUNION	0.036	0.176	0.291	0.030	60.3	0.35	0.10	4.70	0.77	0.0013	0.00	0.90	0.27	57.75
9F4	S_9F4	REUNION	0.012	0.116	0.256	0.010	65.0	0.35	0.10	4.50	0.60	0.0018	0.00	0.91	0.28	63.09
9F3	S_9F3	REUNION	0.035	0.199	0.278	0.010	45.6	0.35	0.10	4.50	0.60	0.0018	0.00	0.83	0.22	43.16
9F2	S_9F2	REUNION	0.003	0.057	0.149	0.010	87.7	0.35	0.10	4.50	0.60	0.0018	0.00	0.96	0.36	86.56
9F1	S_9F1	REUNION	0.020	0.080	0.175	0.020	69.9	0.35	0.10	4.50	0.60	0.0018	0.00	0.92	0.30	68.05
9E1	S_9E1	REUNION	0.004	0.097	0.193	0.030	59.3	0.35	0.10	4.50	0.61	0.0018	0.00	0.90	0.27	57.27
9D1	S_9D1	REUNION	0.037	0.120	0.222	0.010	40.0	0.35	0.10	4.40	0.59	0.0018	0.00	0.80	0.20	37.53

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

UD-Detention, Project: REUNION VILLAGE 9 PRELIMINARY DRAINAGE REPORT Basin ID: Detention & Water Quality Pond T

100-YR		
VOLUME EURY WOCY		
PERMANEN	ZONE 1 AND 2	ORIFICE
POOL	Example Zone Configur	ation (Retention Pond)

Example 2016	Conngura	lion (Keten	tion Fond)	
Required Volume Calculation				
Selected BMP Type =	EDB]		
Watershed Area =	201	acres		
Watershed Length =	4,000	ft		
Watershed Slope =	0.02	ft/ft		
Watershed Imperviousness =	55%	percent		
Percentage Hydrologic Soil Group A =	3%	percent		
Percentage Hydrologic Soil Group B =	73%	percent		
Percentage Hydrologic Soil Groups C/D =	25%	percent		
Desired WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths =	Commerce C	ity - Civic Cer	ter	
Water Quality Capture Volume (WQCV) =	3.692	acre-feet	Optional Use	
Excess Urban Runoff Volume (EURV) =	11.603	acre-feet	1-hr Precipita	ation
2-yr Runoff Volume (P1 = 0.84 in.) =	6.877	acre-feet	0.84	inches
5-yr Runoff Volume (P1 = 1.12 in.) =	10.033	acre-feet	1.12	inches
10-yr Runoff Volume (P1 = 1.39 in.) =	13.962	acre-feet	1.39	inches
25-yr Runoff Volume (P1 = 1.79 in.) =	21.161	acre-feet	1.79	inches
50-yr Runoff Volume (P1 = 2.14 in.) =	26.679	acre-feet	2.14	inches
100-yr Runoff Volume (P1 = 2.53 in.) =	33.875	acre-feet	2.53	inches
500-yr Runoff Volume (P1 = 3.55 in.) =	51.401	acre-feet	3.55	inches
Approximate 2-yr Detention Volume =	6.442	acre-feet		
Approximate 5-yr Detention Volume =	9.433	acre-feet		
Approximate 10-yr Detention Volume =	12.639	acre-feet		
Approximate 25-yr Detention Volume =	15.482	acre-feet		
Approximate 50-yr Detention Volume =	17.160	acre-feet		
Approximate 100-yr Detention Volume =	20.068	acre-feet		

Stage-Storage Calculation

Zone 1 Volume (WQCV) =	3.692	acre-feet
Zone 2 Volume (EURV - Zone 1) =	7.911	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	8.466	acre-feet
Total Detention Basin Volume =	20.068	acre-feet
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

 Basin Langer-D-Wildin Kaalu (K₁₀₀)
 User

 Initial Surcharge Area (A₂₀)
 user

 Surcharge Volume Length (L₁₀₀)
 user

 Surcharge Volume Width (W₁₀₀)
 user

 Depth of Basin Floor (H₁₀₀₀)
 user

 Width of Basin Floor (H₁₀₀₀)
 user

 Volume of Basin Floor (M₁₀₀₀)
 user

 Volume of Basin Floor (M₁₀₀₀)
 user

 Volume of Basin Floor (M₁₀₀₀)
 user

 Volume of Basin Roor (M₁₀₀₀)
 user

 Volume of Basin Basin (M₁₀₀₀)
 user

 Volume of Basin Basin (M₁₀₀₀)
 user

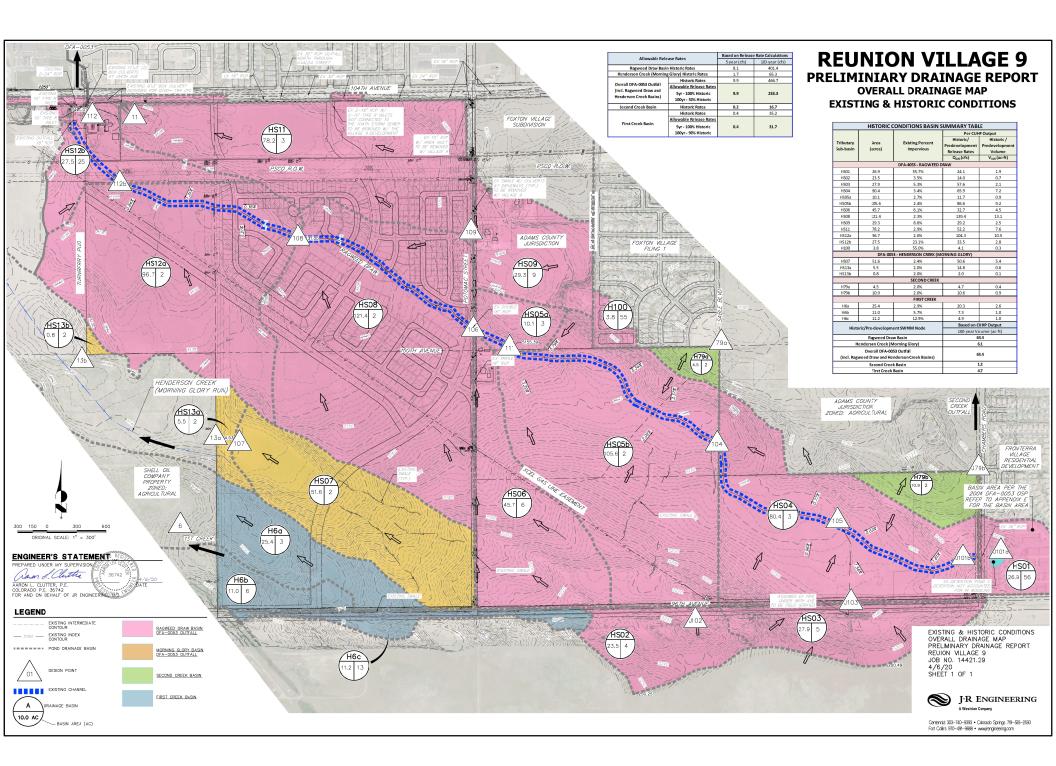
 Volume of Main Basin (M₁₀₀₀)
 user

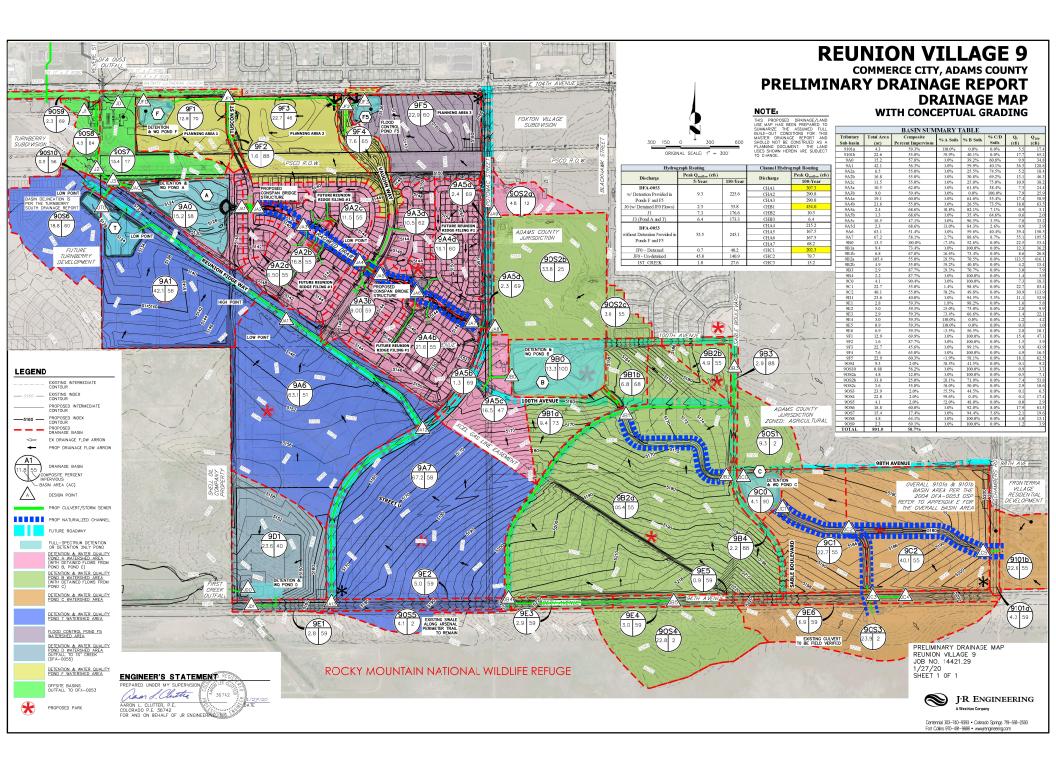
 Vicht of Nain Basin (M₁₀₀₀)
 user

 Volume of Main Basin (M₁₀₀₀)
 user

 Volume of Main Basin (M₁₀₀₀)
 user

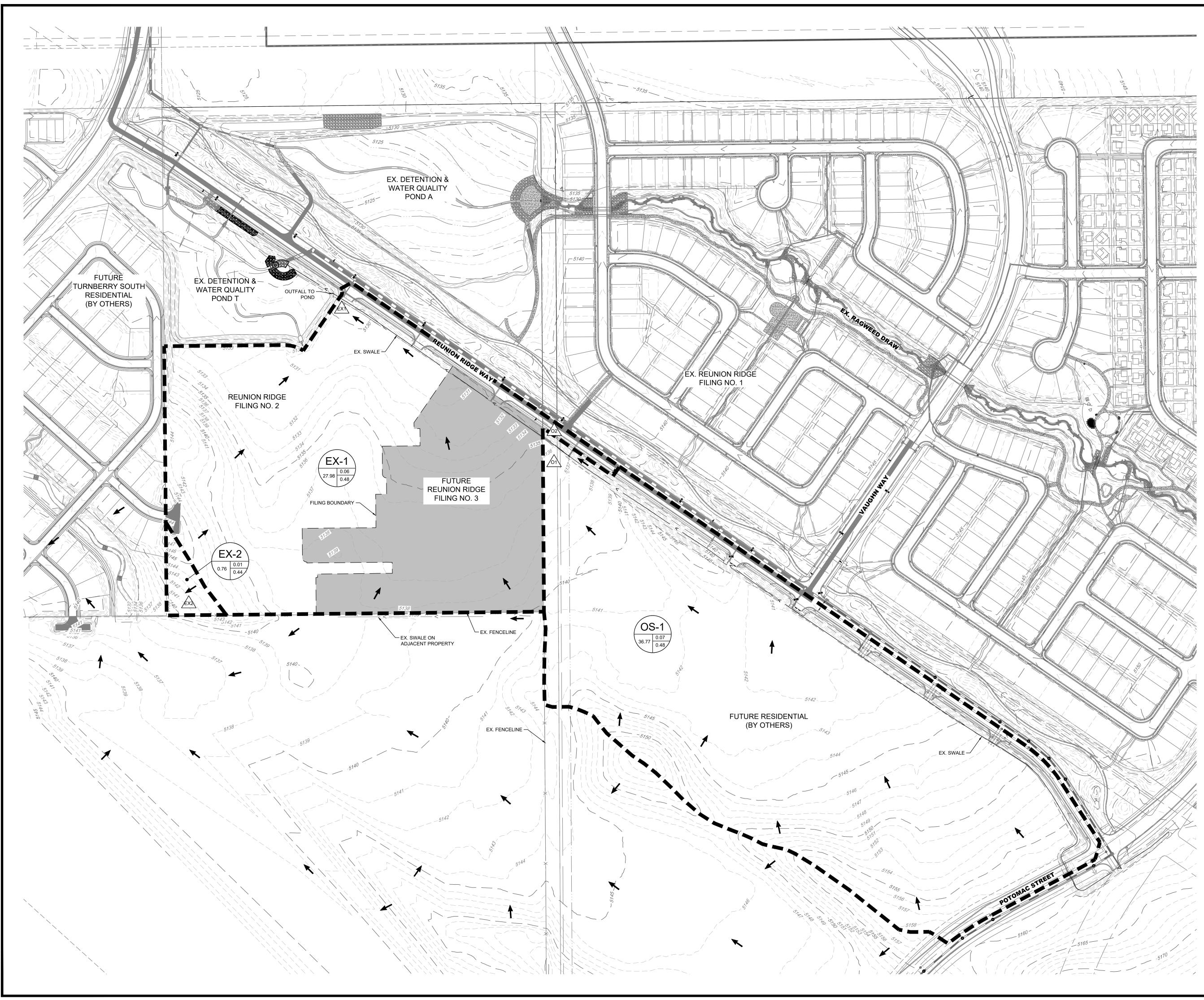
 Calculated Total Basin Volume (V₁₀₁₀)
 user

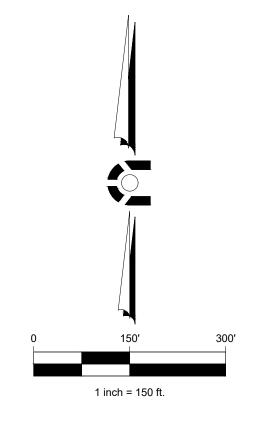

 Calculated Total Basin Volume (V₁₀₁₀)
 User

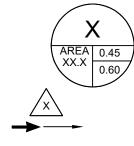

ft/2 ft f ft/2 ft/3

f ft/3 acre-feet

Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft/2)	Optional Override Area (ft ⁴ 2)	Area (acre)	Volume (ft*3)	Volum (ac-ft
Top of Micropool		0.00				0	0.000		
5122.00		1.00				4,538	0.104	2,224	0.051
5,123.00		2.00	-			39,026	0.896	23,662	0.543
5,124.00		3.00				85,459	1.962	86,293	1.981
5,125.00	-	4.00	-		-	130,418	2.994	194,231	4.459
5,126.00	-	5.00	-		-	159,905	3.671	339,393	7.791
5,127.00	-	6.00	-		-	174,278	4.001	506,484	11.62
								684,878	
5,128.00		7.00				182,509	4.190		15.72
5,129.00		8.00				182,438	4.188	867,351	19.91
5,130.00		9.00	-			199,204	4.573	1,058,172	24.29
5,131.00		10.00	-			207,663	4.767	1,261,606	28.96
5,131.33		10.33				210,650	4.836	1,330,627	30.54
5,132.00		11.00	-			216,194	4.963	1,473,620	33.830
5,133.00		12.00				224,591	5.156	1,694,013	38.88
5,133.50		12.50	-	-	-	228,838	5.253	1,807,370	41.492
			-	-	-				
			-	-	-				
			-						
		1							
							1	1	
			-	-	-			1	
			-	-	-	1		1	
			-	-	-				
								I	
			-					I	
			-		-				
			-						
			-						
			-	-	-				
			-	-					
			-	-					
					-				
					-				
			-						
					-			1	
								I	
						-		1	
								I	
					-			1	
					-			I	
					-			1	
								I	
								1	
					** ** ** ** ** ** **				
				•• •• •• •• •• •• •• •• •• •• •• ••					
				•• •• •• •• •• •• •• •• •• •• •• •• ••					
				••• •• •• •• •• •• •• •• •• •• •• •• ••					
					** ** ** ** ** ** **				
					** ** ** ** ** ** **				


		Dete	ention Basin (Dutlet Struct	ure Design				
			UD-Detention, Ve	rsion 3.07 (Februar					
-	: REUNION VILLAGE		RAINAGE REPORT						
(ZONE 3 ~ZONE 2	Detention & Water	duality Fond T							
100-YR				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
VOLUME EURV WQCV			Zone 1 (WQCV)	3.74	3.692	Orifice Plate			
ZONE 1 AND	100-YEA ORIFICE	R	Zone 2 (EURV)	6.00	7.911	Rectangular Orifice			
PERMANENT ORIFICES		(antian Dand)	<u>'</u> one 3 (100-year)	8.04	8.466	Weir&Pipe (Restrict)			
	20.068 Total								
User Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =	= N/A		e filtration media sur	face)	Unde	calculati = rdrain Orifice Area	ed Parameters for Un N/A	derdrain ft ²	
Underdrain Orifice Diameter =	= N/A	inches				ain Orifice Centroid =	N/A	feet	
		-							
User Input: Orifice Plate with one or more orifices of Invert of Lowest Orifice =	or Elliptical Slot Weir (0.00		in WQCV and/or EUR oottom at Stage = 0 ft)			Calcu = rifice Area per Row	lated Parameters for 7.639E-02	Plate ft ²	
Depth at top of Zone using Orifice Plate =	3.75		oottom at Stage = 0 ft)			lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	, j			ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	= 11.00	sq. inches (use recta	ngular openings)			Elliptical Slot Area =	N/A	ft²	
User Input: Stage and Total Area of Each Orifice	Row (numbered from Row 1 (required)	Row 2 (optional)) Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft) 0.00	1.25	2.50	(spriorial)					
Orifice Area (sq. inches) 11.00	11.00	11.00						J
Stage of Orifice Centroid (ft	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Orifice Area (sq. inches	·								j
User Input: Vertical Orifice (Cir	cular or Rectangular)					Calculater	Parameters for Vert	ical Orifice	
User input. Vertical office (of	Zone 2 Rectangular	Not Selected	1			Galculatee	Zone 2 Rectangular	Not Selected	1
Invert of Vertical Orifice =	3.75	N/A	ft (relative to basin b	ottom at Stage = 0 ft)	v	ertical Orifice Area =	0.33	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	6.00	N/A		ottom at Stage = 0 ft)	Verti	cal Orifice Centroid =	0.25	N/A	feet
Vertical Orifice Height = Vertical Orifice Width =	= <u>6.00</u> = <u>8.00</u>	N/A	inches inches						
Ventical Office Width -	0.00	J	inches						
User Input: Overflow Weir (Dropbox) and		-	-			Calculated	Parameters for Over	rflow Weir	
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	= 6.00 = 12.00	N/A N/A	ft (relative to basin bo feet	ttom at stage = 0 ft)		ate Upper Edge, H _t = Weir Slope Length =	6.00 6.00	N/A N/A	feet feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for fla	at grate)		100-yr Orifice Area =	6.10	N/A	should be > 4
Horiz. Length of Weir Sides =	6.00	N/A	feet		Overflow Grate Ope	en Δrea w/o Debris -	50.40	N1 / A	
Overflow Grate Open Area % =	70%	N/A	%, grate open area/t					N/A	ft ²
Debris Clogging % = 50% N/A %								N/A N/A	ft ² ft ²
Debris Clogging % =	= 50%	N/A	%	otal area		pen Area w/ Debris =	25.20		
Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C		•	%	otal area	Overflow Grate O	oen Area w/ Debris =		N/A	ft ²
User Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restric Zone 3 Restrictor	tor Plate, or Rectang Not Selected	wlar Orifice)		Overflow Grate O	oen Area w/ Debris = Calculated Parameter	25.20 rs for Outlet Pipe w/ Zone 3 Restrictor	N/A Flow Restriction Plat Not Selected	ft ²
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	ircular Orifice, Restric Zone 3 Restrictor 0.37	tor Plate, or Rectang Not Selected N/A	% ular Orifice) ft (distance below basi	otal area n bottom at Stage = 0 f	Overflow Grate Op (oen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	25.20 rs for Outlet Pipe w/ Zone 3 Restrictor 8.26	N/A Flow Restriction Plat Not Selected N/A	ft ² ie ft ²
User Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restric Zone 3 Restrictor 0.37 48.00	tor Plate, or Rectang Not Selected N/A N/A	wlar Orifice)	n bottom at Stage = 0 f	Overflow Grate Op (ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	25.20 rs for Outlet Pipe w/ Zone 3 Restrictor	N/A Flow Restriction Plat Not Selected	ft ²
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	ircular Orifice, Restric Zone 3 Restrictor 0.37 48.00 30.00	tor Plate, or Rectang Not Selected N/A N/A	% ular Orifice) ft (distance below basi inches	n bottom at Stage = 0 f	Overflow Grate O (t)	pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	25.20 rs for Outlet Pipe w/ / Zone 3 Restrictor 8.26 1.41 1.82	N/A Flow Restriction Plat Not Selected N/A N/A N/A	ft ² e ft ² feet
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar	ircular Orifice, Restric Zone 3 Restrictor 0.37 48.00 30.00	tor Plate, or Rectang Not Selected N/A N/A	% Jular Orifice) If (distance below basi inches inches	n bottom at Stage = 0 f Half-(Overflow Grate O (t) Out Central Angle of Restr	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	25.20 rs for Outlet Pipe w/ I Zone 3 Restrictor 8.26 1.41	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway	ft ² e ft ² feet
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage=	ircular Orifice, Restric Zone 3 Restrictor 0.37 48.00 30.00	tor Plate, or Rectang Not Selected N/A N/A	% ular Orifice) ft (distance below basi inches	n bottom at Stage = 0 f Half-(Overflow Grate O (t) Central Angle of Rest Spillway	caculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	25.20 rs for Outlet Pipe w/ / Zone 3 Restrictor 8.26 1.41 1.82	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet	ft ² e ft ² feet
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar	ircular Orifice, Restric Zone 3 Restrictor 0.37 48.00 30.00	tor Plate, or Rectang Not Selected N/A N/A	% Jular Orifice) If (distance below basi inches inches	n bottom at Stage = 0 f Half-(Overflow Grate Op () t) Central Angle of Rest Spillway Stage a	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	25.20 rs for Outlet Pipe w/ / Zone 3 Restrictor 8.26 1.41 1.82	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway	ft ² e ft ² feet
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage= Spillway Crest Length =	ircular Orifice, Restric Zone 3 Restrictor 0.37 48.00 30.00	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet	% Jular Orifice) If (distance below basi inches inches	n bottom at Stage = 0 f Half-(Overflow Grate Op () t) Central Angle of Rest Spillway Stage a	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	25.20 rs for Outlet Pipe w/ / Zone 3 Restrictor 8.26 1.41 1.82	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet	ft ² e ft ² feet
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	ircular Orifice, Restrictor - 0.37 - 48.00 - 30.00 - 30.00 	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V	% Jular Orifice) If (distance below basi inches inches	n bottom at Stage = 0 f Half-(Overflow Grate Op () t) Central Angle of Rest Spillway Stage a	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	25.20 rs for Outlet Pipe w/ / Zone 3 Restrictor 8.26 1.41 1.82	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet	ft ² e ft ² feet
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Crest Length – Spillway Crest Length – Spillway End Slopes =	ircular Orifice, Restrictor 2 One 3 Restrictor 0.37 48.00 30.00 gular or Trapezoidal) gular or Trapezoidal)	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V	% Jular Orifice) If (distance below basi inches inches	n bottom at Stage = 0 f Half-(Overflow Grate Op () t) Central Angle of Rest Spillway Stage a	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	25.20 rs for Outlet Pipe w/ / Zone 3 Restrictor 8.26 1.41 1.82	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet	ft ² e ft ² feet
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway (Rectar Spillway Crest Length = Spillway End Slopes - Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	ircular Orifice, Restrictor 2 0.37 = 48.00 = 30.00 - 30.00 	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07	% jular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 0.84	n bottom at Stage = 0 f Half-(<u>5 Year</u> 1.12	Overflow Grate O (t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.39	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.79	25.20 Starting Starti	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet feet acres 100 Year 2.53	ft ² fe feet radians 500 Year 3.55
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ti) =	ircular Orifice, Restric Zone 3 Restrictor 0.37 4 48.00 30.00 augular or Trapezoidal) augular or Trapezoidal) augular os S WQCV	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV	% ular Orifice) ft (distance below basi inches inches pottom at Stage = 0 ft) 2 Year	n bottom at Stage = 0 f Half-0 5 Year	Overflow Grate O (t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	25.20 s for Outlet Pipe w/ Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres 100 Year	ft ² fe feet radians 500 Year
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway (Rectar Spillway Crest Length = Spillway End Slopes Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	ircular Orifice, Restrictor 2 0.37 = 48.00 = 30.00 - 30.00 	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07	% jular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 0.84	n bottom at Stage = 0 f Half-(<u>5 Year</u> 1.12	Overflow Grate Op (t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.39	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.79	25.20 Starting Starti	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet feet acres 100 Year 2.53	ft ² fe feet radians 500 Year 3.55
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage= Spillway Erest Length = Spillway Erest Stages = Spillway Erest Length = Spillway Erest = Spill	ircular Orifice, Restrictor 0.37 48.00 30.00 ngular or Trapezoidal) - - - - - - - - - - - - -	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 11.603 11.588 0.00	% ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01	n bottom at Stage = 0 f Half-0 5 Year 1.12 10.033 10.020 0.04	Overflow Grate Op () () Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.39 13.962 13.939 0.19	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.79 21.161 21.140 0.63	25.20 s for Outlet Pipe w/ Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 50 Year 2.14 26.679 26.655 0.91	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres 100 Year 2.53 33.875 33.839 1.29	ft ² feet radians 500 Year 3.55 51.401 51.355 2.15
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage- Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	ircular Orifice, Restrictor - 0.37 - 48.00 - 30.00 - 30.00 	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet 1.07 11.603 11.588 0.00 0.0	% ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8	5 Year 1.12 10.033 0.04 7.1	Overflow Grate Op () Contral Angle of Rest Spillway Stage a Basin Area a 1.39 13.962 13.939 0.19 38.1	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = t Top of Freeboard = 25 Year 1.79 21.161 21.140 0.63 126.2	25.20 s for Outlet Pipe w/ 1 Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 2.14 2.6479 2.6455 0.91 183.8	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres 100 Year 2.53 3.875 3.839 1.29 259.7	ft ² feet radians <u>3.55</u> 51.401 <u>51.355</u> 2.15 431.7
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Crest Length = Spillway Enet Stage= Spillway Enet Stage= Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	ircular Orifice, Restrictor 0.37 48.00 30.00 ngular or Trapezoidal) - - - - - - - - - - - - -	tor Plate, or Rectang Not Selected N/A N/A If (relative to basin b feet H-V feet EURV 1.07 11.603 11.588 0.00 0.0 188.0 4.5	% ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8 113.1 3.3	n bottom at Stage = 0 f Half-0 5 Year 1.12 10.033 	Overflow Grate Op () () Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.39 13.962 13.939 0.19	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.79 21.161 21.140 0.63 126.2 334.6 91.4	25.20 s for Outlet Pipe w/ Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 50 Year 2.14 26.679 26.655 0.91	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres 100 Year 2.53 33.875 33.839 1.29	ft ² feet radians <u>500 Year</u> <u>3.55</u> <u>51.401</u> <u>51.355</u> <u>2.15</u>
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Qe	ircular Orifice, Restrictor 0.37 48.00 30.00 augular or Trapezoidal)	tor Plate, or Rectang Not Selected N/A N/A It (relative to basin to feet H:V feet EURV 1.07 11.603 11.588 0.00 0.00 1.88.0 4.5 N/A	% ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8 113.1 3.3 N/A	n bottom at Stage = 0 f Half-C 5 Year 1.12 10.033 10.020 0.04 7.1 163.3 4.2 0.6	Overflow Grate Op () Central Angle of Rest Spillway Stage a Basin Area a 1.39 1.3962 1.3939 0.19 38.1 224.5 15.6 0.4	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= It Top of Freeboard = t Top of Freeboard = 1.79 21.161 21.140 0.63 126.2 334.6 91.4 0.7	25.20 s for Outlet Pipe w/ 1 Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S ted Parameters for S 2.14 2.6.679 2.6.655 0.91 183.8 416.7 103.4 0.6	N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet acres 100 Year 2.53 3.875 3.839 1.29 259.7 520.2 111.9 0.4	ft ² feet radians 500 Year 3.55 51.401 51.355 2.15 431.7 750.5 130.3 0.3
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage- Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Result Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Dint Peak Flow, q (cfs/acre) = Predevelopment Deak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	ircular Orifice, Restric Zone 3 Restrictor 0.37 48.00 30.00 augular or Trapezoidal) WQCV 0.53 3.692 3.689 0.00 0.0 61.6 1.7 N/A Plate	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 11.603 11.588 0.00 0.0 188.0 4.5 N/A Vertical Orifice 1	% ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8 113.1 3.3 N/A Vertical Orifice 1	n bottom at Stage = 0 f Half-C 5 Year 1.12 10.033 10.020 0.04 7.1 163.3 4.2 0.6 Vertical Orifice 1	Overflow Grate Op () Central Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.39 13.962 0.19 38.1 224.5 15.6 0.4 Overflow Grate 1	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = t Top of Freeboard = 25 Year 1.79 21.161 0.63 126.2 334.6 91.4 0.7 Overflow Grate 1	25.20 s for Outlet Pipe w/ Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 50 Year 2.14 26.679 26.655 0.91 183.8 416.7 103.4 0.6 Outlet Plate 1	N/A Flow Restriction Plat Not Selected N/A N/A N/A pillway feet feet acres 100 Year 2.53 3.839 1.29 259.7 520.2 111.9 0.4 Outlet Plate 1	ft ² feet radians 500 Year 3.55 51.401 2.15 4.31.7 750.5 1.30.3 0.3 Outlet Plate 1
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Erds Store Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) OPTIONAL Override Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Predevelopment Unit Peak Flow, q (cfs/acre) Predevelopment Deak Q(cfs) Peak Outflow Q (cfs) Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fps) Max Velocity through Grate 1 (fps)	ircular Orifice, Restrictor 0.37 48.00 30.00 gular or Trapezoidal) gular or Trapezoidal) 9 9 9 9 9 9 9 9 9 9 9 9 9	tor Plate, or Rectang Not Selected N/A N/A If (relative to basin to feet H:V feet EURV 1.07 11.603 11.588 0.00 0.0 188.0 4.5 N/A Vertical Orifice 1 N/A N/A	% ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8 113.1 3.3 N/A Vertical Orifice 1 N/A N/A	n bottom at Stage = 0 f Half-0 5 Year 1.12 10.033 10.020 0.04 7.1 163.3 4.2 0.6 Vertical Orifice 1 N/A N/A	Overflow Grate Op () () () () () () () () () () () () ()	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 1.79 21.161 21.140 0.63 126.2 334.6 91.4 0.7 Overflow Grate 1 1.7 N/A	25.20 s for Outlet Pipe w/ Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 	N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet acres 100 Year 2.53 3.875 3.839 1.29 259.7 520.2 111.9 0.4 Outlet Plate 1 0.4 N/A	ft ² feet radians 500 Year 3.55 51.401 51.355 2.15 431.7 750.5 130.3 0.3 Outlet Plate 1 2.4 N/A
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe - Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage- Spillway Crest Length - Spillway Crest Length - Spillway Crest Length - Spillway Crest Length - Spillway End Slopes - Freeboard above Max Water Surface - Routed Hydrograph Result Design Storm Return Period - One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outlow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	ircular Orifice, Restrict Zone 3 Restrictor 0.37 48.00 30.00 agular or Trapezoidal)	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 11.603 1.588 0.00 0.0 188.0 4.5 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 63	% ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8 113.1 3.3 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 51	n bottom at Stage = 0 f Half-C 5 Year 1.12 10.033 10.020 0.04 7.1 163.3 4.2 0.6 Vertical Orifice 1 N/A N/A 59	Overflow Grate Op () Central Angle of Rest Spillway Stage a Basin Area a 1.39 1.3962 1.3939 0.19 38.1 224.5 15.6 0.4 Overflow Grate 1 0.2 N/A 65	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = t Top of Freeboard = 1.79 21.161 21.140 0.63 126.2 334.6 91.4 0.7 Overflow Grate 1 1.7 N/A 62	25.20 s for Outlet Pipe w/ 1 Zona 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 2.14 2.6.679 2.6.655 0.91 183.8 416.7 103.4 0.6 Outlet Plate 1 1.9 N/A 60	N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet acres 100 Year 2.53 3.875 3.839 1.29 259.7 520.2 111.9 0.4 Outlet Plate 1 2.1 N/A 58	ft ² feet radians 500 Year 3.55 51.401 51.355 2.15 431.7 750.5 130.3 0.3 Outlet Plate 1 2.4 N/A 54
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter - Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Crest Length - Spillway Crest Length - Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nuflow Q (cfs) = Ratio Peak Outflow Volume (Acres) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 9% of Inflow Volume (hours) =	ircular Orifice, Restrictor 0.37 48.00 30.00 autor or Trapezoidal) autor of trapezoidal autor of trapezo	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 1.07 1.03 0.00 1.88.0 4.5 N/A Vertical Orifice 1 N/A N/A N/A	% ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8 113.1 3.3 N/A V/A Vertical Orifice 1 N/A N/A N/A 51 55	n bottom at Stage = 0 f Half-G 5 Year 1.12 10.033 10.020 0.04 7.1 163.3 4.2 0.6 Vertical Orifice 1 N/A N/A N/A S9 63	Overflow Grate Op t) Central Angle of Restrict Spillway Stage a Basin Area a 10 Year 1.39 1.3962 13.939 0.19 13.962 13.939 0.19 38.1 224.5 15.6 0.4 Overflow Grate 1 0.2 N/A N/A 70	calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 1.79 21.161 21.140 0.63 126.2 334.6 91.4 0.7 Overflow Grate 1 1.7 N/A 62 69	25.20 rs for Outlet Pipe w/ Zone 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 50 Year 2.14 26.679 26.655 0.91 183.8 416.7 103.4 0.6 Outlet Plate 1 1.9 N/A 60 68	N/A Not Selected N/A Solution 1.29 259.7 520.2 111.9 0.4 Outlet Plate 1 2.1 N/A 58 68	ft ² fee feet radians 51.355 51.401 51.355 2.15 431.7 750.5 130.3 0.3 Outlet Plate 1 2.4 N/A N/A 54 67
User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage- Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Result Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outlow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	ircular Orifice, Restrict Zone 3 Restrictor 0.37 48.00 30.00 agular or Trapezoidal)	tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 11.603 1.588 0.00 0.0 188.0 4.5 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 63	% ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 0.84 6.877 6.866 0.01 1.8 113.1 3.3 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 51	n bottom at Stage = 0 f Half-C 5 Year 1.12 10.033 10.020 0.04 7.1 163.3 4.2 0.6 Vertical Orifice 1 N/A N/A 59	Overflow Grate Op () Central Angle of Rest Spillway Stage a Basin Area a 1.39 1.3962 1.3939 0.19 38.1 224.5 15.6 0.4 Overflow Grate 1 0.2 N/A 65	calculated Parameter Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = t Top of Freeboard = 1.79 21.161 21.140 0.63 126.2 334.6 91.4 0.7 Overflow Grate 1 1.7 N/A 62	25.20 s for Outlet Pipe w/ 1 Zona 3 Restrictor 8.26 1.41 1.82 ted Parameters for S 2.14 2.6.679 2.6.655 0.91 183.8 416.7 103.4 0.6 Outlet Plate 1 1.9 N/A 60	N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet acres 100 Year 2.53 3.875 3.839 1.29 259.7 520.2 111.9 0.4 Outlet Plate 1 2.1 N/A 58	ft ² feet radians 500 Year 3.55 51.401 51.355 2.15 431.7 750.5 130.3 0.3 Outlet Plate 1 2.4 N/A 54




BACK POCKET

DRAINAGE MAPS

LEGEND

BASIN DESIGNATION **5 YEAR COEFFICIENTS** 100 YEAR COEFFICIENTS

DESIGN POINT DIRECTIONAL FLOW ARROW

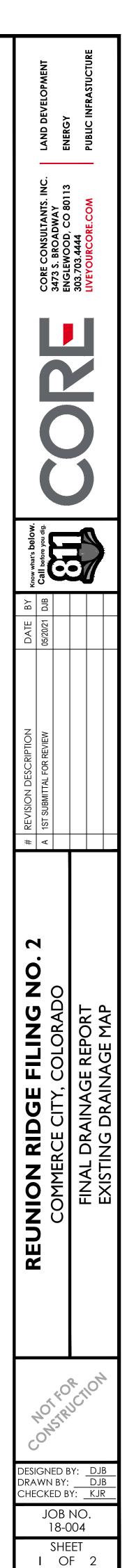
PROPOSED DRAINAGE BASIN PROPOSED MAJOR CONTOUR

PROPOSED MINOR CONTOUR ------ 5280 ----- EXISTING MAJOR CONTOUR — — — — — — — — — EXISTING MINOR CONTOUR _____ EASEMENT

> RIGHT OF WAY (R.O.W.) CENTERLINE PROJECT BOUNDARY

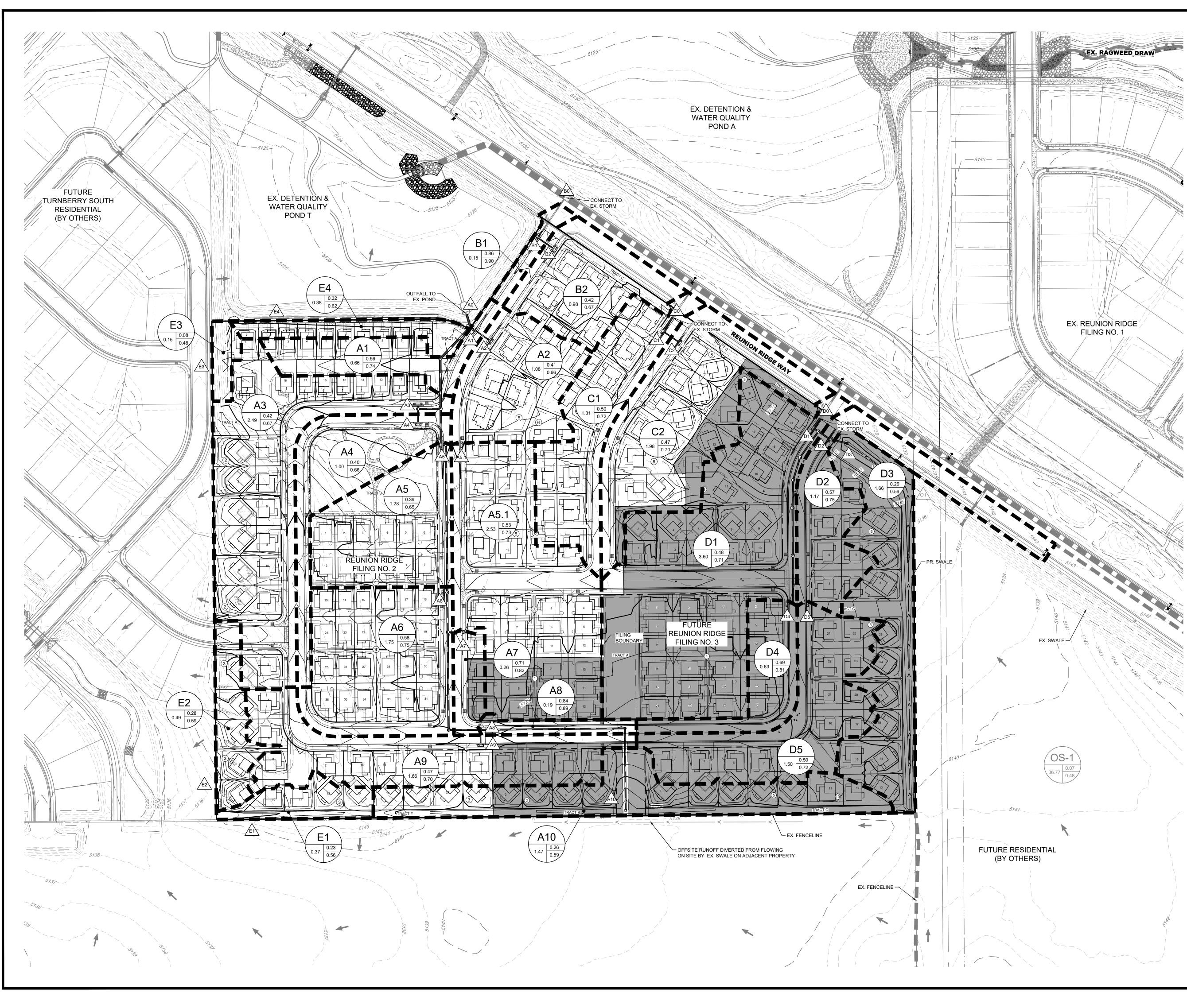
CRUSHER FINES MAINTENANCE ACCESS

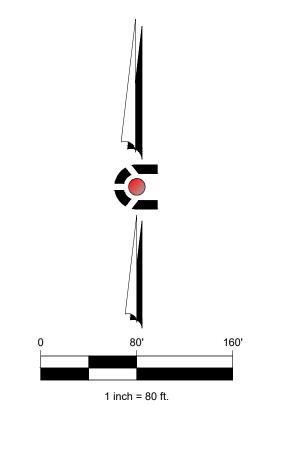
----- 100 YEAR FLOODPLAIN WETLAND IMITS OF CONSTRUCTION


> TAINING WALL DRAINAGE SWALE

NOTES:

1. THERE ARE NO REGULATORY FLOODPLAINS ON-SITE.


RUNOFF SUMMARY TABLE - EXISTING


DIRECT RUNOFF						
DESIGN		AREA	5-Year RUNOFF	100-Year RUNOFF		
POINT	BASIN	(AC)	(CFS)	(CFS)		
EXI	EX-I	27.98	2.17	40.84		
EX2	EX-2	0.76	0.02	1.70		
01	OS-I	36.77	2.76	42.46		

EXISTING STORM & STUB OUT
 Image: Constraint of the second se

RIPRAP **—** · **—** · **—**

LEGEND

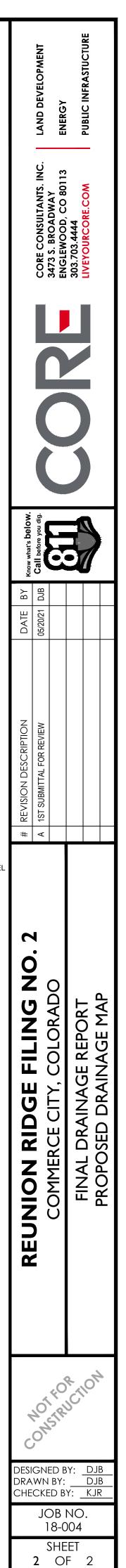
BASIN DESIGNATION

5 YEAR COEFFICIENTS

100 YEAR COEFFICIENTS

EXISTING PROPOSED Х Х AREA 0.45 XX.X 0.60 AREA 0.45 XX.X EASEMENT Image: Constraint of the second se ⊴{)**=**

DESIGN POINT DIRECTIONAL FLOW ARROW EMERGENCY OVERFLOW ROUTE PROPOSED DRAINAGE BASIN EXISTING DRAINAGE BASIN PROPOSED MAJOR CONTOUR ----- PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR — — — — EXISTING MINOR CONTOUR RIGHT OF WAY (R.O.W.) CENTERLINE PROJECT BOUNDARY PROPOSED STORM & STUB OUT EXISTING STORM & STUB OUT STORM INLETS FES, FOREBAY, & TRICKLE CHANNEL OUTLET STRUCTURE CRUSHER FINES MAINTENANCE ACCESS


RIPRAP 100 YEAR FLOODPLAIN /ETLAND LIMITS OF CONSTRUCTION TAINING WALL DRAINAGE SWALE

NOTES:

1. THERE ARE NO REGULATORY FLOODPLAINS ON-SITE.

RUNOFF SUMMARY TABLE - PROPOSED

DIRECT RUNOFF						
			5-Year	100-Year		
DESIGN		AREA	RUNOFF	RUNOFF		
POINT	BASIN	(AC)	(CFS)	(CFS)		
AI	A-I	0.66	1.20	3.60		
A2	A-2	1.08	1.41	5.19		
A3	A-3	2.49	2.67	9.63		
A4	A-4	1.00	0.99	3.69		
A5	A-5	1.28	1.18	<mark>4.4</mark> 5		
A5.1	A-5.1	2.53	3.43	10.72		
A6	A-6	1.75	3.23	9.50		
A7	A-7	0.26	0.69	1.82		
A8	A-8	0.19	0.6	1.45		
A9	A-9	1.66	2.2 <mark> </mark>	7.35		
AI 0	A-10	1.47	0.83	4.29		
BI	B-I	0.15	0.49	1.16		
B2	B-2	0.98	1.30	4.69		
CI	C-I	1.31	2.1 I	6.79		
C	C-2	1.98	2.18	7.34		
DI	D-I	3.60	3.34	11.06		
D2	D-2	1.17	2.14	6.36		
D3	D-3	1.66	0.70	3.59		
D4	D-4	0.63	1.49	3.98		
D5	D-5	1.50	2.32	7.52		
EI	E-I	0.37	<mark>0.1</mark> 8	0.98		
E2	E-2	0.49	0.39	1.87		
E3	E-3	0.15	0.04	0.61		
E4	E-4	0.38	0.42	1.80		
OI	OS-I	36.77	2.76	42.46		

