Traffic Impact Study

QuikTrip 4207 Commerce City, Colorado

Prepared for:

QuikTrip Corporation

TRAFFIC IMPACT STUDY

QuikTrip 4207 Commerce City

Commerce City, Colorado

Prepared for QuikTrip Corporation 4705 South 129th East Avenue Tulsa, OK 74134-7008

Prepared by
Kimley-Horn and Associates, Inc.
Curtis D. Rowe, P.E., PTOE
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

June 2021

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS
LIST OF TABLESii
LIST OF FIGURESii
1.0 EXECUTIVE SUMMARY1
2.0 INTRODUCTION5
3.0 EXISTING AND FUTURE CONDITIONS7
3.1 Existing Study Area7
3.2 Existing Roadway Network7
3.3 Existing Traffic Volumes10
3.4 Unspecified Development Traffic Growth10
4.0 PROJECT TRAFFIC CHARACTERISTICS
4.1 Trip Generation14
4.2 Trip Distribution15
4.3 Traffic Assignment15
4.4 Total (Background Plus Project) Traffic15
5.0 TRAFFIC OPERATIONS ANALYSIS23
5.1 Analysis Methodology23
5.2 Key Intersection Operational Analysis24
5.3 Project Accesses Operational Analysis25
5.4 Vehicle Queuing Analysis27
6.0 CONCLUSIONS AND RECOMMENDATIONS
APPENDICES
Appendix A – Intersection Count Sheets
Appendix B - DRCOG and Adjacent Traffic Study Documents
Appendix C – Trip Generation Worksheets
Appendix D – Intersection Analysis Worksheets
Appendix E - Queueing Analysis Worksheets
Appendix F - Conceptual Site Plan

LIST OF TABLES

Table 1 – QuikTrip 4207 Commerce City Project Traffic Generation	14
Table 2 – Level of Service Definitions	23
Table 3 – 81st Avenue and Tower Road LOS Results	24
Table 4 – Project Access LOS Results	27
Table 5 – Turn Lane Queuing Analysis Results	28
LIST OF FIGURES	
Figure 1 – Vicinity Map	6
Figure 2 – Site Area	8
Figure 3 – Existing Lane Configurations and Control	9
Figure 4 – 2019 Existing Traffic Volumes	11
Figure 5 – 2022 Background Traffic Volumes	12
Figure 6 – 2040 Background Traffic Volumes	13
Figure 7 – Non Pass-By Project Trip Distribution	16
Figure 8 – AM Pass-By Trip Distribution	17
Figure 9 – PM Pass-By Trip Distribution	18
Figure 10 – Non Pass-By Project Traffic Assignment	19
Figure 11 – Pass-by Project Traffic Assignment	20
Figure 12 – 2022 Background Plus Project Traffic Volumes	21
Figure 13 – 2040 Background Plus Project Traffic Volumes	22
Figure 14 – 2022 Recommended Lane Configurations and Control	30
Figure 15 – 2040 Recommended Lane Configurations and Control	31

1.0 EXECUTIVE SUMMARY

The QuikTrip 4207 project is expected to contain a gas station with convenience market. The project is proposed to be located on the southwest corner of the 81st Avenue and Tower Road intersection in Commerce City, Colorado. The gas station is anticipated to provide 18 passenger vehicle fueling positions, five (5) heavy vehicle/truck fueling positions, and a convenience market with approximately 7,300 square feet of building space. It is expected that the project will be completed in 2022; therefore, analysis was completed for the 2022 short term and 2040 long term horizons.

The purpose of this study is to identify project traffic generation characteristics, to identify potential project traffic related impacts on the local street system, and to develop mitigation measures required for identified impacts. The intersection of 81st Avenue and Tower Road was incorporated into this traffic study in accordance with the City of Commerce City standards and requirements. In addition, two proposed project accesses along 81st Avenue and two proposed project accesses along Tower Road were also evaluated.

Regional access to the project will be provided by Interstate 70 (I-70) and E-470 while primary access will be provided by Tower Road. Direct access to the site will be provided by four driveways, two each along 81st Avenue and Tower Road. The proposed west access along the south side of 81st Avenue will only allow right turn exiting movements. The proposed east access along the south side of 81st Avenue will align with an existing full movement access located for a property on the north side of 81st Avenue and will allow full turning movements. The north access along the west side of Tower Road is proposed to allow only right turn entering movements while the south access proposes three-quarter turning movements (left out restricted).

QuikTrip 4207 is expected to generate approximately 4,724 weekday driveway trips, with 287 of these trips occurring during the morning peak hour and 322 trips occurring during the afternoon peak hour. Accounting for pass-by, expected net new trips (non pass-by) to the surrounding street network results in approximately 2,078 new weekday daily trips, of which 109 and 142 new trips are anticipated during the weekday morning and afternoon peak hours, respectively.

Distribution of project traffic on the street system was based on the area street system characteristics, existing traffic patterns and volumes, demographic information, and the proposed access system for the project. Assignment of project traffic was based upon the trip generation described previously and the distributions developed.

Based on the analysis presented in this report, Kimley-Horn believes the QuikTrip 4207 Commerce City project will be successfully incorporated into the existing and future roadway network. The proposed project development resulted in the following recommendations and conclusions:

2022 Buildout Improvement Recommendations

- With completion of the QuikTrip 4207 Commerce City project, the site is recommended to have two accesses along the south side of 81st Avenue and two accesses along the west side of Tower Road. The west project access along 81st Avenue will allow for right turn exiting movements only and is requested to allow for improved onsite circulation with the truck fueling positions proposed on the west side of the site. The east access along 81st Avenue will allow full turning movements and align with an existing full movement access located on the north side of 81st Avenue. The north access along Tower Road will be restricted to allow for right turn entrance movements only. This access is beneficial to reduce the amount of westbound left turning traffic entering the site from the full movement access proposed along 81st Avenue. With the compressed distance of 225 feet along 81st Avenue between Tower Road and the full movement access, this reduction in westbound left turning traffic will provide a street network benefit. The south access along Tower Road will be a three-quarter access with restriction of exiting eastbound left turn movements. The three project access drives that will allow exiting movements are recommended to have R1-1 "STOP" signs installed for the exiting approaches. A single exiting lane should be sufficient for the two project driveways along 81st Avenue and the three-quarter access along Tower Road.
- A R3-2 No Left Turn Sign should be installed underneath the "STOP" sign of the west access along 81st Avenue to identify the restriction to right turn exiting movements only from the driveway. To restrict entrance movements as well, a R3-1 No Right Turn sign should be installed facing drivers traveling eastbound along 81st Street as well as a R3-2 No Left Turn

sign facing westbound drivers along 81st Street. Further, the curb returns at the west access are proposed to be channelized to restrict entering movements and force exiting vehicles to right turn movements only.

- To provide additional support to restrict the north access along Tower Road to right-in movements only, it is recommended the curb be constructed to channelize traffic entering so that it is obvious to the driver onsite that it is an entrance only access to restrict exiting movements. Likewise, R5-1 DO NOT ENTER signs shall be installed internal to the site at the access, with the signs facing west internal to the site.
- To provide additional support to restrict the south access along Tower Road to three-quarter movements, it is recommended that a R3-2 No Left Turn sign be placed underneath the STOP sign at this access. Likewise, R6-1(R) "ONE WAY" signs should be installed within the raised median of Tower Road, visible to drivers exiting the project site.
- A northbound left turn lane has already been constructed for the future Tower Road South Access alignment with a length of 325 feet. This left turn lane will just need to be designated with pavement legend turn arrows.
- To meet City of Commerce City standards it is recommended that a continuous southbound right turn lane be constructed for the north right-in only access along Tower Road from 81st Avenue to the driveway.
- It is recommended that an eastbound right turn to southbound acceleration lane be constructed at the three-quarter access along Tower Road to a length of 510 feet with a 220-foot taper.
- The existing 125-foot eastbound left turn lane at the 81st Avenue and Tower Road intersection is recommended to be restriped to a length of 150 feet. To the west of this left turn lane, it is recommended that 81st Avenue be restriped to include a 25-foot bay taper and westbound left turn lane of 50 feet for the 81st Avenue eastern full movement access.

2040 Buildout Improvement Recommendations

- The Commerce City Transportation Plan identifies improving Tower Road within the project limits to be a six-lane facility as a high priority. Construction has recently been completed improving Tower Road from a two-lane roadway to a four-lane roadway while other areas have been improved to a six-lane facility. It is assumed that all of Tower Road will be improved to be a six-lane facility within the project limits by the long-term 2040 horizon.
- To accommodate future vehicle queueing demands, the eastbound approach of 81st Avenue and Tower Road intersection may need to provide dual left turn lanes. The outside left turn lane of the dual lefts could be the eastbound through lane converted to a forced left turn lane due to very little through traffic. When this occurs, the existing eastbound right turn lane could be converted to a shared through/right turn lane. This will allow for the back-to-back left turn configuration recommended to remain with the TWLTL striped at the access into the east driveway along 81st Avenue.
- 81st Avenue may need to be improved to be a five-lane section adjacent to Tower Road if the DIA Tech Center project is fully developed. Northbound and eastbound (as identified previously) dual left turn lanes may be needed in the future at the intersection of 81st Avenue and Tower Road if these future traffic volumes are realized. The westbound approach should be reconfigured with a designated westbound left turn lane and shared through/right turn lane if and when dual left turn lanes are incorporated on the eastbound approach of this intersection. If future traffic volumes are realized, a southbound right turn lane may also be needed operationally in additional to three southbound through lanes at this intersection.

General Improvements

 Any on-site or off-site improvements should be incorporated into the Civil Drawings and conform to standards of Commerce City and the Manual on Uniform Traffic Control Devices (MUTCD) – 2009 Edition.

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study of future traffic conditions associated with the QuikTrip 4207 project proposed on the southwest corner of the 81st Avenue and Tower Road intersection in Commerce City, Colorado. A vicinity map illustrating the project site location is shown in **Figure 1**. The gas station is anticipated to provide 18 passenger vehicle fueling positions, five (5) heavy vehicle/truck fueling positions, and a convenience market with approximately 7,300 square feet of building space. A conceptual site plan illustrating the project and access locations is shown in **Appendix F**. It is expected that the project will be completed by 2022; therefore, analysis was completed for the 2022 short term and 2040 long term horizons.

The purpose of this study is to identify project traffic generation characteristics, to identify potential project traffic related impacts on the local street system, and to develop mitigation measures required for identified impacts. The intersection of 81st Avenue and Tower Road was incorporated into this traffic study in accordance with the City of Commerce City standards and requirements. In addition, two proposed project accesses along 81st Avenue and two proposed project accesses along Tower Road were also evaluated.

Regional access to the project will be provided by Interstate 70 (I-70) and E-470 while primary access will be provided by Tower Road. Direct access to the site will be provided by four driveways, two each along 81st Avenue and Tower Road. The proposed west access along the south side of 81st Avenue will only allow right turn exiting movements. The proposed east access along the south side of 81st Avenue will align with an existing full movement access located for a property on the north side of 81st Avenue and will allow full turning movements. The north access along the west side of Tower Road is proposed to allow only right turn entering movements while the south access proposes three-quarter turning movements (left out restricted). The west access along 81st Avenue is proposed to be located approximately 450 feet (measured center to center) west of Tower Road while the east access along 81st Avenue is located approximately 325 feet west of Tower Road and 125 feet east of the west project access. The south access along Tower Road is proposed to be located approximately 700 feet south of 81st Avenue. The north right-in access along Tower Road is proposed to be located approximately 375 feet south of 81st Avenue and 325 feet north of the south project access.

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The existing site is vacant land, with the surrounding area primarily vacant as well. USAirport Parking center is located west of the site, while Canopy Airport Parking is located east of the site on the east side of Tower Road. A Conoco gas station is located on the northwest corner of the 81st Avenue and Tower Road intersection. Pena Boulevard is located south of the site while E-470 is located to the east. Denver International Airport is located further east of the site. Single family residences are located in the extended area to the north. The land uses and roadway network surrounding the site in the project study area vicinity are shown in **Figure 2**.

3.2 Existing Roadway Network

Tower Road is classified as a Principal Arterial extending north-south with areas of four-lane and six-lane sections within the project limits. Four-lane sections are located north of the 84th Avenue alignment and south of 81st Avenue while a six-lane section is provided from between the 84th Avenue alignment and 81st Avenue. Tower Road provides a raised median and has a speed limit of 45 miles per hour within the study area. 81st Avenue extends east-west with one through lane in each direction with a center two-way left turn lane (TWLTL). 81st Avenue has a speed limit of 30 miles per hour.

The signalized intersection of 81st Avenue and Tower Road operates with permissive left turn phasing on the eastbound and westbound approaches and protected-permitted left turn phasing on the northbound and southbound approaches. The eastbound approach of this intersection provides a left turn lane, one through lane, and a right turn lane while the westbound approach includes a shared left turn/through lane and a right turn lane. The northbound approach provides a left turn lane, three through lanes, and a right turn lane while the southbound approach includes a left turn lane, two through lanes, and a right turn lane.

The intersection lane configuration and control for the study area intersections are shown in **Figure 3**.

QUIKTRIP 4207 COMMERCE CITY SITE AREA FIGURE 2

Kimley » Horn

3.3 Existing Traffic Volumes

Existing peak hour turning movement counts were conducted at the intersection of 81st Avenue and Tower Road, as well as at the existing access which will align with the 81st Avenue East Access on Tuesday, December 10, 2019. The counts were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM. The turning movement counts are shown in **Figure 4** with count sheets provided in **Appendix A**.

3.4 Unspecified Development Traffic Growth

According to traffic projections provided by Denver Regional Council of Governments (DRCOG), Tower Road is expected to have an average daily traffic (ADT) volume of 75,000 vehicles in 2040. This equates an annual growth rate of approximately 2.86 percent compared to the estimated existing average daily volumes along Tower Road. A directional hourly volume percentage of eight (8) percent was utilized to convert peak hour traffic volumes to daily traffic volumes. An annual growth rate of 2.86 percent was used to calculate short term 2022 background traffic projections. Likewise, an annual growth rate of 2.86 percent was used as a basis for determining future traffic volume projections in 2040. Additionally, traffic volumes from the DIA Tech Center Traffic Impact Analysis completed in September 2011 and Telluride Industrial - DIA Tech Filing 10 Traffic Impact Study completed by Kimley-Horn and Associates in October 2019 were used to estimate 2040 traffic volumes for the study area. The through movements along Tower Road were adjusted to develop a future ADT of 75,000 vehicles per day in 2040. DRCOG traffic information and applicable documents from the DIA Tech Center and Telluride Industrial - DIA Tech Filing 10 traffic studies are included in Appendix B. Background traffic volumes for 2022 and 2040 are shown in Figure 5 and Figure 6, respectively.

Tuesday, December 10, 2019 Tuesday, December 10, 2019 7:30-8:30 AM (4:15-5:15 PM) 7:00-8:00 AM (4:30-5:30 PM)

3,200 81ST AVENUE

SITE

TOWER ROAD 41,500

LEGEND

Study Area Key Intersection

XXX(XXX)

Weekday AM(PM) Peak Hour Traffic Volumes

XX,X00 Estimated Daily Traffic Volume

QUIKTRIP 4207 COMMERCE CITY 2019 EXISTING TRAFFIC VOLUMES

FIGURE 4

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the *Trip Generation Manual*¹ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report average rates that apply to Gasoline Station with Convenience Market land use (ITE Code 945) for traffic associated with the development.

Since the project is a commercial development, pass-by trips are expected. These pass-by trips are vehicles already on the street network that will be attracted to the gas station. The pass-by percentages were obtained from the ITE "Trip Generation Handbook", Third Edition.

QuikTrip 4207 Commerce City is expected to generate approximately 4,724 daily weekday driveway trips, with 287 of these trips occurring during the morning peak hour and 322 trips occurring during the afternoon peak hour. Accounting for pass-by, expected net new trips (non pass-by) to the surrounding street network results in approximately 2,078 weekday daily trips, of which 109 and 142 trips are anticipated during the weekday morning and afternoon peak hours, respectively. Calculations were based on the procedure and information provided in the ITE *Trip Generation Manual*, 10th Edition – Volume 1: User's Guide and Handbook, 2017. **Table 1** summarizes the estimated trip generation for the proposed development. The trip generation worksheet is included in **Appendix C**.

Table 1 – QuikTrip 4207 Commerce City Project Traffic Generation

Gas Station with Convenience Market	Vehicle Trips							
(ITE 945) – 23 Fueling Positions	Daily AM Peak Hour			PM	PM Peak Hour			
Trip Scenario	Daily	In	Out	Total	In	Out	Total	
Non Pass-By	2,078	55	54	109	72	70	142	
Pass-By	2,646	91	87	178	92	88	180	
Total	4,724	146	141	287	164	158	322	

¹ Institute of Transportation Engineers, *Trip Generation Manual*, Tenth Edition, Washington DC, 2017.

_

4.2 Trip Distribution

Distribution of site traffic was based on the area street system characteristics, existing traffic patterns and volumes, existing demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project non pass-by trip distribution is illustrated in **Figure 7**.

Since the project is a commercial development, a certain amount of traffic attracted to the gas station will already be passing by the site. This pass-by distribution is a means to quantify the amount of traffic arriving to the site from a given direction and then leaving the site in the same original direction of travel, continuing the driver's trip. The expected weekday morning and afternoon peak hour pass-by trip distributions were calculated based on actual traffic volumes. Directional differences in the morning and afternoon peak hours were accounted for in the pass-by distributions as shown in **Figures 8** and **9**, respectively.

4.3 Traffic Assignment

Project traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in **Table 1**. Project non pass-by traffic assignment is shown in **Figure 10**, while **Figure 11** illustrates the expected pass-by traffic assignment for the QuikTrip 4207 Commerce City development.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short term 2022 horizon and long term 2040 horizon. These total traffic volumes for the site are illustrated for the 2022 and 2040 horizon years in **Figures 12** and **13**, respectively.

LEGEND

Study Area Key Intersection

XXX(XXX)

Weekday AM(PM)

Peak Hour Traffic Volumes

XX,X00

Estimated Daily Traffic Volume

QUIKTRIP 4207 COMMERCE CITY 2022 BACKGROUND PLUS PROJECT TRAFFIC VOLUMES

FIGURE 12

LEGEND

Study Area Key Intersection

XXX(XXX)

Weekday AM(PM)

Peak Hour Traffic Volumes

XX,X00

Estimated Daily Traffic Volume

QUIKTRIP 4207 COMMERCE CITY 2040 BACKGROUND PLUS PROJECT TRAFFIC VOLUMES

FIGURE 13

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2022 and 2040 development horizons at the identified key intersections and access driveways. The acknowledged source for determining overall capacity is the current edition of the *Highway Capacity Manual (HCM)*².

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). For intersections and roadways in this study area, standard traffic engineering practice identifies overall LOS D for signalized intersections and LOS E for movements and approaches of unsignalized intersections as the minimum threshold for acceptable operations. **Table 2** shows the definition of level of service for signalized and unsignalized intersections.

Table 2 – Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
Α	≤ 10	≤ 10
В	> 10 and ≤ 20	> 10 and ≤ 15
С	> 20 and ≤ 35	> 15 and ≤ 25
D	> 35 and ≤ 55	> 25 and ≤ 35
E	> 55 and ≤ 80	> 35 and ≤ 50
F	> 80	> 50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the level of service (LOS) for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. Level of service for a two-way stop-controlled intersection is not defined for the intersection as a whole. Level of service for a signalized and four-way stop controlled intersection is defined for each approach and for the intersection.

_

² Transportation Research Board, *Highway Capacity Manual*, Sixth Edition, Washington DC, 2016.

5.2 Key Intersection Operational Analysis

Calculations for the level of service at the key intersections for the study area are provided in **Appendix D**. The existing year analysis is based on the lane geometry and intersection control shown in **Figure 3**. The existing peak hour factors were utilized in the existing and short-term horizon (2022) analysis while the existing signalized intersection analyses used the observed cycle lengths. The recommended HCM urban area peak hour factor of 0.92 was used for the 2040 horizon analysis. Synchro traffic analysis software was used to analyze the study intersections and access driveway for level of service.

81st Avenue and Tower Road

The signalized intersection of 81st Avenue and Tower Road operates with protected-permitted left turn phasing on the northbound and southbound approaches. This intersection currently operates acceptably with LOS A during the morning and afternoon peaks. With the existing lane configurations and control, this intersection is expected to continue to operate acceptably with LOS A during the peak hours in 2022 with or without the addition of project traffic. As mentioned previously, Tower Road is expected to provide three through lanes in each direction by 2040. With development of the surrounding area, eastbound and northbound dual left turn lanes may also be needed at this intersection in the future. It is recommended that the outside left turn lane of the dual lefts on the eastbound approach of this intersection be a forced left turn lane to accommodate future vehicles queues. When this occurs, the existing eastbound right turn lane should become a shared through/right turn lane. The westbound approach is recommended to be restriped with a left turn lane and shared through/right turn lane. The southbound approach is recommended to include a right turn lane. With these recommended improvements by 2040, this intersection is expected to operate acceptably with LOS D in the morning peak hour and LOS C in the afternoon peak hour. **Table 3** provides the results of the level of service.

Table 3 – 81st Avenue and Tower Road LOS Results

	AM Peak I	Hour	PM Peak Hour			
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS		
2019 Existing	4.7	Α	7.5	Α		
2022 Background	6.0	Α	7.8	Α		
2022 Background Plus Project	7.6	Α	10.3	В		
2040 Background #	51.1	D	24.1	C		
2040 Background Plus Project #	53.7	D	24.1	С		

= Includes Three SB Through Lanes and a Right Turn Lane; EB and NB Dual Left Turn Lanes

5.3 Project Accesses Operational Analysis

With completion of the QuikTrip 4207 Commerce City project, the site is recommended to have two accesses along the south side of 81st Avenue and two accesses along the west side of Tower Road. The west project access along 81st Avenue will allow for right turn exiting movements only and is requested to allow for improved onsite circulation with the truck fueling positions proposed on the west side of the site. The east access along 81st Avenue will allow full turning movements and align with an existing full movement access located on the north side of 81st Avenue. The north access along Tower Road will be restricted to right-in movements only. This access is beneficial to reduce the amount of westbound left turning traffic entering the site from the full movement access proposed along 81st Avenue. With the compressed distance of 225 feet along 81st Avenue between Tower Road and the full movement access, this reduction in westbound left turning traffic will provide a street network benefit. The south access along Tower Road will be a three-quarter access with restriction of exiting eastbound left turn movements. The three project access drives that will allow exiting movements are recommended to have R1-1 "STOP" signs installed for the exiting approaches. A single exiting lane should be sufficient for the two project driveways along 81st Avenue and the three-quarter access along Tower Road.

A R3-2 No Left Turn Sign should be installed underneath the "STOP" sign of the west access along 81st Avenue to identify the restriction to right turn exiting movements only from the driveway. To restrict entrance movements as well, a R3-1 No Right Turn sign should be installed facing drivers traveling eastbound along 81st Street as well as a R3-2 No Left Turn sign facing westbound drivers along 81st Street. Further, the curb returns at the west access are proposed to be channelized to restrict entering movements and force exiting vehicles to right turn movements only.

To provide additional support to restrict the north access along Tower Road to right-in movements only, it is recommended the curb be constructed to channelize traffic entering so that it is obvious to the driver onsite that it is an entrance only access to restrict exiting movements. Likewise, R5-1 DO NOT ENTER signs shall be installed internal to the site at the access, with the signs facing west internal to the site.

To provide additional support to restrict the south access along Tower Road to three-quarter movements, it is recommended that a R3-2 No Left Turn sign be placed underneath the STOP sign at this access. Likewise, R6-1(R) "ONE WAY" signs should be installed within the raised median of Tower Road, visible to drivers exiting the project site.

As required per City standards, a southbound right turn deceleration lane is recommended at the northern right-in access along Tower Road. To meet City standards, this right turn deceleration lane would require a length of 185 feet plus 220-foot taper. There is approximately 340 feet between the access and 81st Avenue, therefore this southbound right turn deceleration lane is recommended as a continuous lane. An eastbound right turn to southbound acceleration lane is also recommended for the proposed southern three-quarter access along Tower Road. To meet City standards, this acceleration lane would require a length of 510 feet plus 220-foot taper.

With the recommended configuration of the project accesses in the opening year of 2022, all movements at the access intersections are anticipated to operate acceptably with LOS B or better during the weekday peak hours. By 2040, all movements at the access intersections are expected to continue to operate acceptably with LOS E or better during the peak hours. Of note, the LOS E is projected for the eastbound right turn movement exiting the three-quarter access, which is anticipated to operate better than predicted with an acceleration lane proposed along southbound Tower Road. The operational analysis at the proposed project accesses is summarized in **Table 4** for the short-term 2022 and long-term 2040 horizons. Detailed results of the operational analysis are also provided in **Appendix D**.

Table 4 – Project Access LOS Results

	2022 Total Traffic				2040 Total Traffic			
	AM Peak		PM Peak		AM Peak		PM Peak	
	Ho	ur	Ho	ur	Hour		Hour	
Access and Movement	Delay (sec/ veh)	LOS	Delay (sec/ veh)	LOS	Delay (sec/ veh)	LOS	Delay (sec/ veh)	LOS
81st Avenue West Access								
Northbound Approach	8.5	Α	8.9	Α	8.9	Α	11.1	В
81st Avenue East Access								
Northbound Approach	8.7	Α	9.0	Α	9.3	Α	12.4	В
Eastbound Left	7.5	Α	7.4	Α	9.2	Α	7.9	Α
Westbound Left	7.3	Α	7.5	Α	7.7	Α	9.5	Α
Southbound Approach	9.6	Α	9.8	Α	19.6	С	26.9	D
Tower Road South Access								
Northbound Left	12.0	В	11.1	В	28.5	D	20.4	С
Eastbound Right	14.7	В	12.8	В	45.2	Е	25.5	D

5.4 Vehicle Queuing Analysis

Queuing analysis was conducted for the study area intersections per Commerce City standards and requirements. Results were obtained from the 95th percentile queue lengths obtained from the Synchro analysis. Queue analysis worksheets at the signalized intersections are provided in **Appendix E**. Queue length calculations for unsignalized intersections are provided within the level of service operational sheets provided in **Appendix D**. Results of the queuing analysis and recommendations at the study area intersections are provided in **Table 5**. Of note, any queue lengths calculated at less than one vehicle were rounded up to 25 feet for passenger cars and 50 feet for trucks to account for one vehicle of storage needed.

Table 5 - Turn Lane Queuing Analysis Results

	Existing	2022		2040	
	Turn Lane	Calculated	2022	Calculated	2040
	Length	Queue	Recommended	Queue	Recommended
Intersection Turn Lane	(feet)	(feet)	Length (feet)	(feet)	Length (feet)
81st Avenue & Tower Road					
Eastbound Left	125'	136'	150'	185' DL	125' & C
Eastbound Right	С	64'	С	694'	С
Westbound Left	DNE	DNE	DNE	75'	C
Westbound Right	С	25'	С	29'	С
Northbound Left	250'	95'	250'	527' DL	525' DL
Northbound Right	250'	25'	250'	25'	250'
Southbound Left	100'	25'	100'	25'	100'
Southbound Right	С	25'	С	119'	150'
81st Avenue West RO Access					
Northbound Right	DNE	50'	50 '	50'	50'
81st Avenue East Access					
Northbound Approach	DNE	25'	25'	25'	25'
Eastbound Left	100'	25'	TWLTL	25'	TWLTL
Westbound Left	DNE	25'	TWLTL	25'	TWLTL
Southbound Approach	С	25'	С	75'	С
Tower Rd North RI Access					
Southbound Right	DNE	25'	C	25'	С
Tower Road South 3/4 Access					
Northbound Left	325'	25'	325'	50'	325'
Eastbound Right	DNE	25'	25'	75'	75 '

DNE = Does Not Exist; C = Continuous Lane; DL = Dual Left Turns; TWLTL = Two-Way Left Turn Lane

As shown in the table representing the queuing results, all anticipated queues are accommodated or managed within existing turn bay lengths with project traffic in the 2022 project build out year with exception of the eastbound left turn at 81st Avenue and Tower Road. The existing 125-foot eastbound left turn lane at the 81st Avenue and Tower Road intersection is recommended to be restriped to a length of 150 feet. To the west of this left turn lane, it is recommended that 81st Avenue be restriped to include a 25-foot bay taper and westbound left turn lane of 50 feet for the 81st Avenue eastern full movement access.

A northbound left turn lane has already been constructed for the future Tower Road South Access alignment with a length of 325 feet. This left turn lane will just need to be designated with left turn arrow pavement legends.

Vehicle queues are expected to extend past several auxiliary turn lanes by 2040 if future traffic volumes are realized. It is recommended that Commerce City continue to monitor the intersection of 81st Avenue and Tower Road in more detail as the surrounding DIA Tech Center

project and other developments in the area are constructed. Eastbound and northbound dual left turn lanes may need to be incorporated at the 81st Avenue and Tower Road intersection with development of the entire DIA Tech Center. Eastbound dual left turn lanes would be needed to prevent vehicles from extending beyond the existing full movement access along 81st Avenue located approximately 225 feet west of Tower Road.

Based on the results of the intersection operational and vehicle queuing analysis, the key intersection recommended improvements and control are shown in **Figure 14** for the 2022 horizon and **Figure 15** for the 2040 horizon.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes the QuikTrip 4207 Commerce City project will be successfully incorporated into the existing and future roadway network. The proposed project development resulted in the following recommendations and conclusions:

2022 Buildout Improvement Recommendations

- With completion of the QuikTrip 4207 Commerce City project, the site is recommended to have two accesses along the south side of 81st Avenue and two accesses along the west side of Tower Road. The west project access along 81st Avenue will allow for right turn exiting movements only and is requested to allow for improved onsite circulation with the truck fueling positions proposed on the west side of the site. The east access along 81st Avenue will allow full turning movements and align with an existing full movement access located on the north side of 81st Avenue. The north access along Tower Road will be restricted to allow for right turn entrance movements only. This access is beneficial to reduce the amount of westbound left turning traffic entering the site from the full movement access proposed along 81st Avenue. With the compressed distance of 225 feet along 81st Avenue between Tower Road and the full movement access, this reduction in westbound left turning traffic will provide a street network benefit. The south access along Tower Road will be a three-quarter access with restriction of exiting eastbound left turn movements. The three project access drives that will allow exiting movements are recommended to have R1-1 "STOP" signs installed for the exiting approaches. A single exiting lane should be sufficient for the two project driveways along 81st Avenue and the three-quarter access along Tower Road.
- A R3-2 No Left Turn Sign should be installed underneath the "STOP" sign of the west access along 81st Avenue to identify the restriction to right turn exiting movements only from the driveway. To restrict entrance movements as well, a R3-1 No Right Turn sign should be installed facing drivers traveling eastbound along 81st Street as well as a R3-2 No Left Turn sign facing westbound drivers along 81st Street. Further, the curb returns at the west access are proposed to be channelized to restrict entering movements and force exiting vehicles to right turn movements only.

- To provide additional support to restrict the north access along Tower Road to right-in movements only, it is recommended the curb be constructed to channelize traffic entering so that it is obvious to the driver onsite that it is an entrance only access to restrict exiting movements. Likewise, R5-1 DO NOT ENTER signs shall be installed internal to the site at the access, with the signs facing west internal to the site.
- To provide additional support to restrict the south access along Tower Road to three-quarter movements, it is recommended that a R3-2 No Left Turn sign be placed underneath the STOP sign at this access. Likewise, R6-1(R) "ONE WAY" signs should be installed within the raised median of Tower Road, visible to drivers exiting the project site.
- A northbound left turn lane has already been constructed for the future Tower Road South Access alignment with a length of 325 feet. This left turn lane will just need to be designated with pavement legend turn arrows.
- To meet City of Commerce City standards it is recommended that a continuous southbound right turn lane be constructed for the north right-in only access along Tower Road from 81st Avenue to the driveway.
- It is recommended that an eastbound right turn to southbound acceleration lane be constructed at the three-quarter access along Tower Road to a length of 510 feet with a 220-foot taper.
- The existing 125-foot eastbound left turn lane at the 81st Avenue and Tower Road intersection is recommended to be restriped to a length of 150 feet. To the west of this left turn lane, it is recommended that 81st Avenue be restriped to include a 25-foot bay taper and westbound left turn lane of 50 feet for the 81st Avenue eastern full movement access.

2040 Buildout Improvement Recommendations

• The Commerce City Transportation Plan identifies improving Tower Road within the project limits to be a six-lane facility as a high priority. Construction has recently been completed improving Tower Road from a two-lane roadway to a four-lane roadway while other areas

have been improved to a six-lane facility. It is assumed that all of Tower Road will be improved to be a six-lane facility within the project limits by the long-term 2040 horizon.

- To accommodate future vehicle queueing demands, the eastbound approach of 81st Avenue and Tower Road intersection may need to provide dual left turn lanes. The outside left turn lane of the dual lefts could be the eastbound through lane converted to a forced left turn lane due to very little through traffic. When this occurs, the existing eastbound right turn lane could be converted to a shared through/right turn lane. This will allow for the back-to-back left turn configuration recommended to remain with the TWLTL striped at the access into the east driveway along 81st Avenue.
- 81st Avenue may need to be improved to be a five-lane section adjacent to Tower Road if the DIA Tech Center project is fully developed. Northbound and eastbound (as identified previously) dual left turn lanes may be needed in the future at the intersection of 81st Avenue and Tower Road if these future traffic volumes are realized. The westbound approach should be reconfigured with a designated westbound left turn lane and shared through/right turn lane if and when dual left turn lanes are incorporated on the eastbound approach of this intersection. If future traffic volumes are realized, a southbound right turn lane may also be needed operationally in additional to three southbound through lanes at this intersection.

General Improvements

 Any on-site or off-site improvements should be incorporated into the Civil Drawings and conform to standards of Commerce City and the Manual on Uniform Traffic Control Devices (MUTCD) – 2009 Edition.

APPENDICES

APPENDIX A

Intersection Count Sheets

Commerce City, CO QT 4207 AM Peak 81st Ave and Tower Road File Name: 81st and Tower AM

Site Code : IPO 475 Start Date : 12/10/2019

Page No : 1

Groups Printed- Automobiles - Bicycles and Pedestrians

Start Time Left Thru Right	Ind Peds App. To 0 2	Left		estbo	und			N.L.		1							
Julian I and Julian an		₁ Left	·					IN	orthbo	una			Sc	outhbo	<u>und</u>		
	0 2		Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM 4 0 18	0 2	6	0	1	0	7	21	231	5	0	257	4	434	16	0	454	740
07:15 AM 7 0 17	0 2	4	0	1	0	5	19	265	10	0	294	7	470	18	0	495	818
07:30 AM 8 0 20	0 2	3 2	1	0	0	3	14	246	11	0	271	8	475	25	0	508	810
07:45 AM 11 0 13	0 2	4	1	2	0	7	24	264	7	0	295	6	417	12	0	435	761
Total 30 0 68	0 9	3 16	2	4	0	22	78	1006	33	0	1117	25	1796	71	0	1892	3129
08:00 AM 6 0 20	0 2	3	1	1	0	5	21	257	4	0	282	3	398	25	0	426	739
08:15 AM 12 1 21	0 3	3	0	1	0	4	26	202	15	0	243	4	326	22	0	352	633
08:30 AM 9 0 17	0 2	3	0	1	0	4	14	206	9	0	229	4	356	21	0	381	640
08:45 AM 7 0 16	0 2	5	0	1	0	6	14	184	12	0	210	4	271	18	0	293	532
Total 34 1 74	0 10	14	1	4	0	19	75	849	40	0	964	15	1351	86	0	1452	2544
Grand Total 64 1 142	0 20	30	3	8	0	41	153	1855	73	0	2081	40	3147	157	0	3344	5673
Apprch % 30.9 0.5 68.6	0	73.2	7.3	19.5	0		7.4	89.1	3.5	0		1.2	94.1	4.7	0		
Total % 1.1 0 2.5	0 3.	0.5	0.1	0.1	0	0.7	2.7	32.7	1.3	0	36.7	0.7	55.5	2.8	0	58.9	
Automobiles 64 1 142	0 20	7 30	3	8	0	41	153	1855	73	0	2081	40	3147	157	0	3344	5673
% Automobiles 100 100 100	0 10	100	100	100	0	100	100	100	100	0	100	100	100	100	0	100	100
Bicycles and 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pedestrians																	
% Bicycles and Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Commerce City, CO

QT 4207 AM Peak

81st Ave and Tower Road

File Name: 81st and Tower AM

Site Code : IPO 475 Start Date : 12/10/2019

Commerce City, CO QT 4207 AM Peak 81st Ave and Tower Road File Name: 81st and Tower AM

Site Code : IPO 475 Start Date : 12/10/2019

		8	31st Av	ve			3	31st A	ve			To	ower R	oad			To	wer R	oad		
		Е	astbou	ınd			W	estbo	und			N	orthbo	und			So	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	AM to	08:45 A	M - Pe	eak 1 o	f 1													
Peak Hour fo	r Entir	e Inter	section	n Begin	s at 07:	00 AM															
07:00 AM	4	0	18	0	22	6	0	1	0	7	21	231	5	0	257	4	434	16	0	454	740
07:15 AM	7	0	17	0	24	4	0	1	0	5	19	265	10	0	294	7	470	18	0	495	818
07:30 AM	8	0	20	0	28	2	1	0	0	3	14	246	11	0	271	8	475	25	0	508	810
07:45 AM	11	0	13	0	24	4	1	2	0	7	24	264	7	0	295	6	417	12	0	435	761
Total Volume	30	0	68	0	98	16	2	4	0	22	78	1006	33	0	1117	25	1796	71	0	1892	3129
% App. Total	30.6	0	69.4	0		72.7	9.1	18.2	0		7	90.1	3	0		1.3	94.9	3.8	0		
PHF	.682	.000	.850	.000	.875	.667	.500	.500	.000	.786	.813	.949	.750	.000	.947	.781	.945	.710	.000	.931	.956

Commerce City, CO QT 4207 PM Peak 81st Ave and Tower Road File Name: 81st and Tower PM

Site Code : IPO 475 Start Date : 12/10/2019

Page No : 1

Groups Printed- Automobiles - Bicycles and Pedestrians

			31st A	-		GIC		31st A	ve	HODIICS	Бюус	To	wer R					ower R			
			astbou					estbo					orthbo					outhbo			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	17	0	19	0	36	2	0	0	0	2	18	493	3	0	514	0	291	9	0	300	852
04:15 PM	19	0	18	0	37	3	0	4	0	7	15	475	4	0	494	4	241	11	0	256	794
04:30 PM	14	1	17	0	32	9	1	3	0	13	8	475	4	0	487	2	281	13	0	296	828
04:45 PM	13	0	23	0	36	2	0	4	0	6	12	456	6	0	474	0	340	12	0	352	868
Total	63	1	77	0	141	16	1	11	0	28	53	1899	17	0	1969	6	1153	45	0	1204	3342
05:00 PM	23	0	33	0	56	7	1	3	0	11	13	441	5	1	460	2	337	21	0	360	887
05:15 PM	9	0	21	0	30	11	0	1	0	12	9	450	2	0	461	1	358	10	0	369	872
05:30 PM	14	0	19	0	33	2	0	4	0	6	14	436	3	0	453	1	307	14	0	322	814
05:45 PM	16	0	20	0	36	6	0	2	0	8	9	365	3	0	377	0	263	15	0	278	699
Total	62	0	93	0	155	26	1	10	0	37	45	1692	13	1	1751	4	1265	60	0	1329	3272
	1					l										l					l
Grand Total	125	1	170	0	296	42	2	21	0	65	98	3591	30	1	3720	10	2418	105	0	2533	6614
Apprch %	42.2	0.3	57.4	0		64.6	3.1	32.3	0		2.6	96.5	8.0	0		0.4	95.5	4.1	0		
Total %	1.9	0	2.6	0	4.5	0.6	0	0.3	0	1	1.5	54.3	0.5	0	56.2	0.2	36.6	1.6	0	38.3	
Automobiles	125	1	170	0	296	42	2	21	0	65	98	3591	30	1	3720	10	2418	105	0	2533	6614
% Automobiles	100	100	100	0	100	100	100	100	0	100	100	100	100	100	100	100	100	100	0	100	100
Bicycles and	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pedestrians																					
% Bicycles and	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pedestrians	1																				l

Commerce City, CO

QT 4207 PM Peak

81st Ave and Tower Road

File Name: 81st and Tower PM

Site Code : IPO 475 Start Date : 12/10/2019

Commerce City, CO QT 4207 PM Peak

81st Ave and Tower Road

File Name: 81st and Tower PM

Site Code : IPO 475 Start Date : 12/10/2019

		8	31st A	ve			8	31st A	ve			To	wer R	oad			To	wer R	oad		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	04:00	PM to	05:45 P	M - Pe	ak 1 o	f 1													
Peak Hour fo	r Entir	e Inters	section	n Begin	s at 04:	30 PM															
04:30 PM	14	1	17	0	32	9	1	3	0	13	8	475	4	0	487	2	281	13	0	296	828
04:45 PM	13	0	23	0	36	2	0	4	0	6	12	456	6	0	474	0	340	12	0	352	868
05:00 PM	23	0	33	0	56	7	1	3	0	11	13	441	5	1	460	2	337	21	0	360	887
05:15 PM	9	0	21	0	30	11	0	1	0	12	9	450	2	0	461	1	358	10	0	369	872
Total Volume	59	1	94	0	154	29	2	11	0	42	42	1822	17	1	1882	5	1316	56	0	1377	3455
% App. Total	38.3	0.6	61	0		69	4.8	26.2	0		2.2	96.8	0.9	0.1		0.4	95.6	4.1	0		
PHF	.641	.250	.712	.000	.688	.659	.500	.688	.000	.808	.808	.959	.708	.250	.966	.625	.919	.667	.000	.933	.974

Commerce City, CO QT 4207 AM Peak 81st Ave Access File Name: 81st Ave Access AM

Site Code : IPO 475 Start Date : 12/10/2019

Page No : 1

Groups Printed- Automobiles - Bicycles and Pedestrians

				Groups Pri	ntea- Auto			and Pedesi	rians				
			t Ave				Ave				cess		
			oound				oound				bound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
07:00 AM	2	10	0	12	28	12	0	40	12	2	0	14	66
07:15 AM	2	12	0	14	22	17	0	39	15	2	0	17	70
07:30 AM	3	9	0	12	29	10	0	39	17	4	0	21	72
07:45 AM	0	7	0	7	22	18	0	40	17	2	0	19	66
Total	7	38	0	45	101	57	0	158	61	10	0	71	274
							_			_		1	
08:00 AM	0	8	0	8	25	18	0	43	16	2	0	18	69
08:15 AM	0	9	0	9	30	21	0	51	25	3	0	28	88
08:30 AM	1	12	0	13	25	11	0	36	12	2	0	14	63
08:45 AM	2	9	0	11	17	11	0	28	14	3	0	17	56
Total	3	38	0	41	97	61	0	158	67	10	0	77	276
Grand Total	10	76	0	86	198	118	0	316	128	20	0	148	550
Apprch %	11.6	88.4	0		62.7	37.3	0		86.5	13.5	0		
Total %	1.8	13.8	0	15.6	36	21.5	0	57.5	23.3	3.6	0	26.9	
Automobiles	10	76	0	86	198	118	0	316	128	20	0	148	550
% Automobiles	100	100	0	100	100	100	0	100	100	100	0	100	100
Bicycles and Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycles and Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0

Commerce City, CO

QT 4207 AM Peak

81st Ave Access

File Name: 81st Ave Access AM

Site Code : IPO 475 Start Date : 12/10/2019

Commerce City, CO QT 4207 AM Peak 81st Ave Access File Name: 81st Ave Access AM

Site Code : IPO 475 Start Date : 12/10/2019

		818	st Ave			81s	t Ave			Ac	cess		
		East	tbound			West	bound			South	nbound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:	00 AM to	08:45 AM	- Peak 1 of 1	Ì	·							
Peak Hour for Entire	e Intersect	ion Begin	s at 07:30	AM									
07:30 AM	3	9	0	12	29	10	0	39	17	4	0	21	72
07:45 AM	0	7	0	7	22	18	0	40	17	2	0	19	66
08:00 AM	0	8	0	8	25	18	0	43	16	2	0	18	69
08:15 AM	0	9	0	9	30	21	0	51	25	3	0	28	88
Total Volume	3	33	0	36	106	67	0	173	75	11	0	86	295
% App. Total	8.3	91.7	0		61.3	38.7	0		87.2	12.8	0		
PHF	.250	.917	.000	.750	.883	.798	.000	.848	.750	.688	.000	.768	.838

Commerce City, CO QT 4207 PM Peak 81st Ave Access File Name: 81st Ave Access PM

Site Code : IPO 475 Start Date : 12/10/2019

Page No : 1

Groups Printed- Automobiles - Bicycles and Pedestrians

				Groups Pri	ntea- Auto			and Pedest	rians				
			Ave			81st					ess		
			oound			Westk					bound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
04:00 PM	2	21	0	23	11	16	0	27	14	0	0	14	64
04:15 PM	0	13	0	13	12	17	0	29	23	3	0	26	68
04:30 PM	0	17	0	17	12	12	0	24	15	0	0	15	56
04:45 PM	3	21	0	24	13	10	0	23	15	3	0	18	65
Total	5	72	0	77	48	55	0	103	67	6	0	73	253
			_				_		۱				
05:00 PM	1	36	0	37	11	20	0	31	24	4	0	28	96
05:15 PM	0	12	0	12	11	10	0	21	18	1	0	19	52
05:30 PM	2	19	0	21	11	15	1	27	12	2	0	14	62
05:45 PM	1	28	0	29	15	10	0	25	11	1	0	12	66
Total	4	95	0	99	48	55	1	104	65	8	0	73	276
Grand Total	9	167	0	176	96	110	1	207	132	14	0	146	529
Apprch %	5.1	94.9	0		46.4	53.1	0.5		90.4	9.6	0		
Total %	1.7	31.6	0	33.3	18.1	20.8	0.2	39.1	25	2.6	0	27.6	
Automobiles	9	167	0	176	96	110	1	207	132	14	0	146	529
% Automobiles	100	100	0	100	100	100	100	100	100	100	0	100	100
Bicycles and Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycles and Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0

Commerce City, CO

QT 4207 PM Peak

81st Ave Access

File Name: 81st Ave Access PM

Site Code : IPO 475 Start Date : 12/10/2019

Commerce City, CO QT 4207 PM Peak 81st Ave Access File Name: 81st Ave Access PM

Site Code : IPO 475 Start Date : 12/10/2019

		81s	t Ave			81s	t Ave			Acc	cess		
		Eastl	oound			West	bound			South	bound		
Start Time	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:0	0 PM to 0	5:45 PM	- Peak 1 of	1				,				
Peak Hour for Entire	e Intersecti	on Begins	at 04:15	PM									
04:15 PM	0	13	0	13	12	17	0	29	23	3	0	26	68
04:30 PM	0	17	0	17	12	12	0	24	15	0	0	15	56
04:45 PM	3	21	0	24	13	10	0	23	15	3	0	18	65
05:00 PM	1	36	0	37	11	20	0	31	24	4	0	28	96
Total Volume	4	87	0	91	48	59	0	107	77	10	0	87	285
% App. Total	4.4	95.6	0		44.9	55.1	0		88.5	11.5	0		
PHF	.333	.604	.000	.615	.923	.738	.000	.863	.802	.625	.000	.777	.742

APPENDIX B

DRCOG and Adjacent Traffic Study Documents

Traffic Impact Analysis

DIA Tech Center

Commerce City, Colorado

Prepared for

c/o Vogel & Associates 475 W. 12th Avenue, Suite E Denver, Colorado 80204

Prepared by

DB Enterprise, LLC 2429 So. Lima Street Aurora, CO 80014 (720) 231-1947

September 16, 2011 (DBE #110070)

Figure 9
Year 2017 and 2032 Assignment of
Site-Generated Traffic

Figure 12 Year 2032 Total Peak-Hour Traffic Volumes

TRAFFIC IMPACT STUDY

Telluride Industrial – DIA Tech Filing 10

Commerce City, Colorado

Prepared for
CH Realty VIII-LPC I Denver 84th – Telluride, LLC
2000 McKinney Avenue
Suite 1000
Dallas, Texas 75201

Prepared by
Kimley-Horn and Associates, Inc.
Curtis D. Rowe, P.E., PTOE
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

October 2019

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

APPENDIX C

Trip Generation Worksheets

Project	Quik Trip 4207 Commer	ce City					
Subject	Trip Generation for Gaso	oline/Serv	vice Station with Convenier	nce Market			
Designed by	JRP	Date	December 20, 2019	Job No.	0968	388003	
Checked by		Date		Sheet No.	1	of	1

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations

Land Use Code - Gasoline/Service Station with Convenience Market (945)

Independant Variable - Vehicle Fueling Positions (X)

Vehicle Fueling Positions= 23 Positions

X = 23

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series page 369)

Average Weekday Directional Distribution: 51% ent. 49% exit. T = 12.47 (X) T = 287 Average Vehicle Trip Ends T = 12.47 * 23 146 entering 141 exiting

146 + 141 = 287

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series page 370)

Average Weekday Directional Distribution: 51% ent. 49% exit. T = 13.99(X)322 Average Vehicle Trip Ends T = 13.99 *23.000 164 158 exiting entering 164 158 322

Weekday (900 Series page 368)

Average Weekday Directional Distribution: 50% entering, 50% exiting T = 205.36 (X) T = $\frac{4724}{2362}$ Average Vehicle Trip Ends 2362 exiting

2362 + 2362 = 4724

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

PM Peak Hour	'= 44	% Non	-Pass By	AM Peak Hour =	38%	Non-Pass By
	IN	Out	Total			
AM Peak	55	54	109			
PM Peak	72	70	142			
Daily	1039	1039	2078	PM Peak Hour Rat	e Applied	d to Daily

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

= 569	% Pass	Ву	AM Peak Hour =	62%	Pass By
IN	Out	Total			
91	87	178			
92	88	180			
1323	1323	2646	PM Peak Hour Rate	e Applied	d to Daily
	IN 91 92	IN Out 91 87 92 88	91 87 178 92 88 180	IN Out Total 91 87 178 92 88 180	IN Out Total 91 87 178 92 88 180

APPENDIX D

Intersection Analysis Worksheets

1: Tower Road & 81st Avenue

	ၨ	•	•	←	•	1	†	/	-	ļ	4	
Lane Group	EBL	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	7		ર્ન	7	7	ተተተ	7	7	^	7	
Traffic Volume (vph)	30	68	16	2	4	78	1006	33	25	1796	71	
Future Volume (vph)	30	68	16	2	4	78	1006	33	25	1796	71	
Turn Type	Perm	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases				8		5	2		1	6		
Permitted Phases	4	4	8		8	2		2	6		6	
Detector Phase	4	4	8	8	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	
Total Split (s)	23.0	23.0	23.0	23.0	23.0	13.0	87.0	87.0	10.0	84.0	84.0	
Total Split (%)	19.2%	19.2%	19.2%	19.2%	19.2%	10.8%	72.5%	72.5%	8.3%	70.0%	70.0%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	9.3	9.3		9.3	9.3	102.8	98.3	98.3	97.1	91.3	91.3	
Actuated g/C Ratio	0.08	0.08		0.08	0.08	0.86	0.82	0.82	0.81	0.76	0.76	
v/c Ratio	0.42	0.39		0.26	0.05	0.44	0.25	0.03	0.07	0.71	0.08	
Control Delay	63.5	13.7		56.7	0.5	14.1	3.4	0.6	1.6	7.9	1.4	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	63.5	13.7		56.7	0.5	14.1	3.4	0.6	1.6	7.9	1.4	
LOS	Е	В		Е	Α	В	Α	Α	Α	Α	Α	
Approach Delay				44.2			4.1			7.5		
Approach LOS				D			А			Α		

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 7.6 Intersection LOS: A Intersection Capacity Utilization 73.5% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Tower Road & 81st Avenue

	۶	→	*	•	←	4	1	†	~	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		<u></u>	7		र्स	7	7	ተተተ	7	7	^	7
Traffic Volume (veh/h)	30	0	68	16	2	4	78	1006	33	25	1796	71
Future Volume (veh/h)	30	0	68	16	2	4	78	1006	33	25	1796	71
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	44	0	80	24	4	8	96	1059	44	32	1911	100
Peak Hour Factor	0.68	0.92	0.85	0.67	0.50	0.50	0.81	0.95	0.75	0.78	0.94	0.71
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	129	127	107	132	18	107	297	4046	1256	486	2771	1236
Arrive On Green	0.07	0.00	0.07	0.07	0.07	0.07	0.04	0.79	0.79	0.05	1.00	1.00
Sat Flow, veh/h	1402	1870	1585	1132	265	1585	1781	5106	1585	1781	3554	1585
Grp Volume(v), veh/h	44	0	80	28	0	8	96	1059	44	32	1911	100
Grp Sat Flow(s), veh/h/ln	1402	1870	1585	1397	0	1585	1781	1702	1585	1781	1777	1585
Q Serve(g_s), s	3.7	0.0	5.9	1.9	0.0	0.6	1.2	6.5	0.7	0.4	0.0	0.0
Cycle Q Clear(g_c), s	5.9	0.0	5.9	2.2	0.0	0.6	1.2	6.5	0.7	0.4	0.0	0.0
Prop In Lane	1.00		1.00	0.86		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	129	127	107	150	0	107	297	4046	1256	486	2771	1236
V/C Ratio(X)	0.34	0.00	0.75	0.19	0.00	0.07	0.32	0.26	0.04	0.07	0.69	0.08
Avail Cap(c_a), veh/h	250	288	244	269	0	244	352	4046	1256	519	2771	1236
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.82	0.82	0.82
Uniform Delay (d), s/veh	56.0	0.0	54.9	53.1	0.0	52.4	2.1	3.3	2.7	2.3	0.0	0.0
Incr Delay (d2), s/veh	1.5	0.0	9.8	0.6	0.0	0.3	0.6	0.2	0.1	0.0	1.2	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.4	0.0	2.7	0.8	0.0	0.2	0.4	1.9	0.2	0.1	0.5	0.0
Unsig. Movement Delay, s/veh		0.0	/ / 7	F2.7	0.0	F0.7	2.7	2.4	2.7	2.4	1.0	0.1
LnGrp Delay(d),s/veh	57.5	0.0	64.7	53.7	0.0	52.7	2.7	3.4	2.7	2.4	1.2	0.1
LnGrp LOS	<u>E</u>	A	<u>E</u>	D	A	D	A	A	A	A	A	A
Approach Vol, veh/h		124			36			1199			2043	
Approach LOS		62.2			53.5			3.3			1.1	
Approach LOS		E			D			А			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.8	99.6		12.6	9.3	98.1		12.6				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.5	82.5		18.5	8.5	79.5		18.5				
Max Q Clear Time (g_c+I1), s	2.4	8.5		7.9	3.2	2.0		4.2				
Green Ext Time (p_c), s	0.0	10.4		0.2	0.1	34.5		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			4.7									
HCM 6th LOS			А									

1: Tower Road & 81st Avenue

	۶	→	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J.	†	7		ર્ન	7	7	ተተተ	7	¥	† †	7
Traffic Volume (vph)	59	1	94	29	2	11	42	1822	17	5	1316	56
Future Volume (vph)	59	1	94	29	2	11	42	1822	17	5	1316	56
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	26.0	26.0	26.0	26.0	26.0	26.0	12.0	84.0	84.0	10.0	82.0	82.0
Total Split (%)	21.7%	21.7%	21.7%	21.7%	21.7%	21.7%	10.0%	70.0%	70.0%	8.3%	68.3%	68.3%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	13.5	13.5	13.5		13.5	13.5	96.9	95.5	95.5	93.4	88.8	88.8
Actuated g/C Ratio	0.11	0.11	0.11		0.11	0.11	0.81	0.80	0.80	0.78	0.74	0.74
v/c Ratio	0.61	0.02	0.46		0.31	0.07	0.18	0.47	0.02	0.04	0.55	0.07
Control Delay	66.6	44.0	14.5		52.5	0.6	5.4	8.1	1.7	3.4	8.6	3.1
Queue Delay	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	66.6	44.0	14.5		52.5	0.6	5.4	8.1	1.7	3.4	8.6	3.1
LOS	Е	D	В		D	Α	Α	Α	Α	Α	Α	Α
Approach Delay		36.0			39.5			8.0			8.3	
Approach LOS		D			D			А			А	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.61

Intersection Signal Delay: 10.3 Intersection LOS: B
Intersection Capacity Utilization 57.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 1: Tower Road & 81st Avenue

Movement		۶	→	•	•	←	•	4	†	~	/	+	4
Traffic Nolume (yehrh)	Movement	EBL	EBT		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vehrh)	Lane Configurations	7	↑	7		र्स	7	ሻ	^ ^	7	ሻ	^	7
Initial Q (QID), veh	Traffic Volume (veh/h)	59	1	94	29		11	42		17	5	1316	
Ped-Bike Adji(A_pbT)	Future Volume (veh/h)	59	1	94	29	2	11	42	1822	17	5	1316	56
Parking Bus. Adi	Initial Q (Qb), veh		0			0			0			0	
Work Zöne On Approach	Ped-Bike Adj(A_pbT)	1.00						1.00		1.00			
Adj Sat Flow, veh'n/in 1870 1880 24 8 1430 84 94 16 52 188 195 15 188 375 3877 1203 221 211 1164 Arrive On Green 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0.76 0.02 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h Peak Hour Factor O.64 Peak Hour Factor O.65 Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													
Peak Hour Factor 0.64 0.25 0.71 0.66 0.50 0.69 0.81 0.96 0.71 0.62 0.92 0.67 Percent Heavy Veh,			1870			1870							
Percent Heavy Veh, %													
Cap, veh/h 178 222 188 195 15 188 375 3877 1203 221 2611 1164 Arrive On Green 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0.76 0.02 1.00 1.00 Sat Flow, veh/h 1392 1870 1585 1163 130 1585 1781 5106 1585 1781 5154 1585 Gry Volume(v), veh/h 92 4 132 48 0 16 52 1898 24 8 1430 84 Gry Sat Flow(s), veh/h/n 1392 1870 1585 1781 1702 1585 1781 1702 1585 1781 1702 1585 1781 1702 1585 1781 1702 1585 1781 1702 1585 1781 1702 1585 1781 1702 1502 1802 1180 1335 3871 1203 281 1502 1802 15			0.25		0.66								0.67
Arrive On Green 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12													
Sat Flow, veh/h 1392 1870 1585 1163 130 1585 1781 5106 1585 1781 3554 1585 Grp Volume(v), veh/h 92 4 132 48 0 16 52 1898 24 8 1430 84 Grp Sat Flow(s), veh/h/In 1392 1870 1585 1292 0 1585 1781 1702 1585 1781 1777 1585 Q Serve(g_S), s 7.8 0.2 9.6 3.8 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Cycle Q Clear(g_C), s 11.8 0.2 9.6 4.1 0.0 1.0 1.00 1.0 0.0 0.0 Prop In Lane 1.00 <													
Grp Volume(v), veh/h 92 4 132 48 0 16 52 1898 24 8 1430 84 Grp Sat Flow(s), veh/h/ln 1392 1870 1585 1292 0 1585 1781 1772 1585 1781 1777 1585 O Serve(g_s), s 7.8 0.2 9.6 3.8 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Cycle Q Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Prop In Lane 1.00 </td <td></td>													
Grp Sat Flow(s), veh/h/ln 1392 1870 1585 1292 0 1585 1781 1702 1585 1781 1777 1585 O Serve(g_s), s 7.8 0.2 9.6 3.8 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Cycle O Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Cycle O Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Cycle O Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 0.0 Cycle O Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 0.0 Cycle O Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 0.0 0.0 Cycle O Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.0 0 1.0	Sat Flow, veh/h		1870	1585	1163	130	1585	1781	5106	1585	1781	3554	
Q Serve(g_s), s 7.8 0.2 9.6 3.8 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Cycle Q Clear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Prop In Lane 1.00 1.00 0.92 1.00	Grp Volume(v), veh/h	92	4	132	48	0	16	52	1898	24	8	1430	84
Cycle O Člear(g_c), s 11.8 0.2 9.6 4.1 0.0 1.1 0.8 17.1 0.4 0.1 0.0 0.0 Prop In Lane 1.00 1.00 0.92 1.00 0.09 0.14 0.49 0.02 0.04 0.55 0.07 Avail Cap(c_a), veh/h 262 335 284 289 0 284 425 3877 1203 285 2611 1164 HCMP Platoon Ratio 1.00	Grp Sat Flow(s),veh/h/ln	1392	1870	1585	1292	0	1585	1781	1702	1585	1781	1777	1585
Prop In Lane	Q Serve(g_s), s	7.8	0.2	9.6	3.8	0.0	1.1	8.0	17.1	0.4	0.1	0.0	
Lane Grp Cap(c), veh/h V/C Ratio(X) 0.52 0.02 0.70 0.23 0.00 0.09 0.14 0.49 0.02 0.04 0.55 0.07 Avail Cap(c_a), veh/h 262 335 284 289 0 284 425 3877 1203 285 2611 1164 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		11.8	0.2	9.6	4.1	0.0	1.1	0.8	17.1	0.4	0.1	0.0	
V/C Ratio(X) 0.52 0.02 0.70 0.23 0.00 0.09 0.14 0.49 0.02 0.04 0.55 0.07 Avail Cap(c_a), veh/h 262 335 284 289 0 284 425 3877 1203 285 2611 1164 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.00</td><td></td><td></td><td></td></td<>										1.00			
Avail Cap(c_a), veh/h	Lane Grp Cap(c), veh/h		222	188	211	0	188	375	3877	1203	221	2611	
HCM Platoon Ratio													
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.0									3877				
Uniform Delay (d), s/veh													
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh													
%ile BackOfQ(50%),veh/ln 2.8 0.1 4.1 1.4 0.0 0.4 0.3 5.3 0.1 0.0 0.3 0.0 Unsig. Movement Delay, s/veh 56.1 46.8 55.6 48.9 0.0 47.3 3.4 6.0 3.6 4.8 0.8 0.1 LnGrp LOS E D E D A D A A A A A A A Approach Vol, veh/h 228 64 1974 1522													
Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 56.1 46.8 55.6 48.9 0.0 47.3 3.4 6.0 3.6 4.8 0.8 0.1 LnGrp LOS E D E D A D A A A A A A A A A A A A A A													
LnGrp Delay(d),s/veh 56.1 46.8 55.6 48.9 0.0 47.3 3.4 6.0 3.6 4.8 0.8 0.1 LnGrp LOS E D E D A			0.1	4.1	1.4	0.0	0.4	0.3	5.3	0.1	0.0	0.3	0.0
LnGrp LOS E D E D A D A													
Approach Vol, veh/h 228 64 1974 1522 Approach Delay, s/veh 55.6 48.5 5.9 0.8 Approach LOS E D A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 5.7 95.6 18.7 8.6 92.7 18.7 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.1 19.1 13.8 2.8 2.0 6.1 Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5													
Approach Delay, s/veh 55.6 48.5 5.9 0.8 Approach LOS E D A A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 5.7 95.6 18.7 8.6 92.7 18.7 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+I1), s 2.1 19.1 13.8 2.8 2.0 6.1 Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5		E		E	D		D	A		A	A		A
Approach LOS													
Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 5.7 95.6 18.7 8.6 92.7 18.7 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.1 19.1 13.8 2.8 2.0 6.1 Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5			55.6			48.5							
Phs Duration (G+Y+Rc), s 5.7 95.6 18.7 8.6 92.7 18.7 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+I1), s 2.1 19.1 13.8 2.8 2.0 6.1 Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5	Approach LOS		E			D			А			А	
Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.1 19.1 13.8 2.8 2.0 6.1 Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5	Timer - Assigned Phs	1	2		4	5	6		8				
Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.1 19.1 13.8 2.8 2.0 6.1 Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5	Phs Duration (G+Y+Rc), s	5.7	95.6		18.7	8.6	92.7		18.7				
Max Q Clear Time (g_c+l1), s 2.1 19.1 13.8 2.8 2.0 6.1 Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5	Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Green Ext Time (p_c), s 0.0 27.1 0.4 0.0 18.7 0.2 Intersection Summary HCM 6th Ctrl Delay 7.5	Max Green Setting (Gmax), s	5.5	79.5		21.5	7.5	77.5		21.5				
Intersection Summary HCM 6th Ctrl Delay 7.5	Max Q Clear Time (g_c+l1), s	2.1	19.1		13.8	2.8	2.0		6.1				
HCM 6th Ctrl Delay 7.5	Green Ext Time (p_c), s	0.0	27.1		0.4	0.0	18.7		0.2				
HCM 6th Ctrl Delay 7.5	Intersection Summary												
,				7.5									

	۶	•	•	←	•	4	†	<i>></i>	>	ļ	4	
Lane Group	EBL	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	7		ર્ન	7	ሻ	ተተተ	7	ሻ	^	7	
Traffic Volume (vph)	33	79	17	2	4	124	1182	36	27	1980	77	
Future Volume (vph)	33	79	17	2	4	124	1182	36	27	1980	77	
Turn Type	Perm	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm	
Protected Phases				8		5	2		1	6		
Permitted Phases	4	4	8		8	2		2	6		6	
Detector Phase	4	4	8	8	8	5	2	2	1	6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	
Total Split (s)	26.0	26.0	26.0	26.0	26.0	12.0	84.0	84.0	10.0	82.0	82.0	
Total Split (%)	21.7%	21.7%	21.7%	21.7%	21.7%	10.0%	70.0%	70.0%	8.3%	68.3%	68.3%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag						Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?						Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	9.9	9.9		9.9	9.9	101.1	92.6	92.6	90.5	84.5	84.5	
Actuated g/C Ratio	0.08	0.08		0.08	0.08	0.84	0.77	0.77	0.75	0.70	0.70	
v/c Ratio	0.46	0.54		0.26	0.03	0.63	0.31	0.04	0.12	0.86	0.10	
Control Delay	64.4	26.8		55.6	0.2	23.9	7.6	3.4	2.9	19.6	3.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	64.4	26.8		55.6	0.2	23.9	7.6	3.4	2.9	19.6	3.0	
LOS	Е	С		Е	Α	С	А	Α	Α	В	А	
Approach Delay				46.4			9.2			18.5		
Approach LOS				D			А			В		
Intersection Summary												

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 16.2 Intersection LOS: B
Intersection Capacity Utilization 81.3% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Tower Road & 81st Avenue

Novement Sel		۶	→	•	•	←	4	4	†	~	/	†	1
Traffic Volume (vehrh) 33 0 79 17 2 4 124 1182 36 27 1980 77 Future Volume (vehrh) 33 0 79 17 2 4 124 1182 36 27 1980 77 Future Volume (vehrh) 33 0 79 17 2 4 124 1182 36 27 1980 77 Future Volume (vehrh) 33 0 79 17 2 4 124 1182 36 27 1980 77 Future Volume (vehrh) 33 0 79 17 2 4 124 1182 36 27 1980 77 Future Volume (vehrh) 33 0 79 17 2 4 124 1182 36 27 1980 77 Future Volume (vehrh) 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vehrh) 33 0 79 177 2 4 124 1182 36 27 1980 77 initial O (Ob), veh 0 0 0 79 17 2 4 124 1182 36 27 1980 77 initial O (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Configurations	7	^	7		र्स	7	ሻ	ተተተ	7	ሻ	^	7
Initial Q (QD), yeh	Traffic Volume (veh/h)	33	0	79	17	2	4	124		36	27	1980	77
Ped-Bikic Adj(A_pbT)	Future Volume (veh/h)	33	0	79	17	2	4	124	1182	36	27	1980	77
Parking Bus, Adj	Initial Q (Qb), veh		0			0			0			0	0
Work Zöne On Approach	Ped-Bike Adj(A_pbT)	1.00						1.00					
Adj Staf Flow, veh/huln 1870 130 0.0 0.0 0.0 0.0 0.0 <td></td> <td>1.00</td> <td></td> <td>1.00</td> <td>1.00</td> <td></td> <td>1.00</td> <td>1.00</td> <td></td> <td>1.00</td> <td>1.00</td> <td></td> <td>1.00</td>		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h Peak Hour Factor O.64 O.25 O.71 O.66 O.50 O.69 O.81 O.96 O.81 O.96 O.71 O.62 O.92 O.72 Peak Hour Factor O.64 O.25 O.71 O.66 O.50 O.69 O.81 O.96 O.81 O.96 O.71 O.62 O.92 O.67 Peak Hour Factor O.64 O.25 O.71 O.66 O.50 O.69 O.81 O.96 O.81 O.96 O.81 O.96 O.71 O.62 O.92 O.67 O.72 O.66 O.70 O.80 O.71 O.62 O.92 O.72 O.72 O.66 O.70 O.80 O.71 O.62 O.92 O.72 O.72 O.73 O.75 O.66 O.70 O.70 O.70 O.70 O.70 O.70 O.70 O.70													
Peak Hour Factor 0.64 0.25 0.71 0.66 0.50 0.69 0.81 0.96 0.71 0.62 0.92 0.67 Percent Heavy Veh,			1870			1870	1870						
Petcent Heavy Veh, %													
Cap, veh/h 156 165 139 155 20 139 259 3919 1216 416 2694 1202 Arrive On Green 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.04 0.77 0.07 0.06 1.00 0.0			0.25		0.66								0.67
Arrive On Green 0.09 0.00 0.09 0.09 0.09 0.09 0.09 0.0													
Sate Flow, veh/h													
Grp Volume(v), veh/h 52 0 111 30 0 6 153 1231 51 44 2152 115 Grp Sal Flow(s), veh/h/In 1405 1870 1585 1354 0 1585 1781 1770 1585 1781 1777 1585 Q Serve(g_s), s 4.3 0.0 8.2 2.1 0.0 0.4 2.3 8.9 0.9 0.6 0.0 0.0 Cycle Q Clear(g_c), s 6.7 0.0 8.2 2.4 0.0 0.4 2.3 8.9 0.9 0.6 0.0 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 156 165 139 175 0 139 259 3919 1216 41 2694 1202 V/C Ratio(X) 0.33 0.00 0.17 0.00 0.04 0.59 0.31 0.0 0.11 0.0													
Grp Sat Flow(s), veh/h/ln 1405 1870 1585 1354 0 1585 1781 1702 1585 1781 1777 1585 Q Serve(g_s), s 4.3 0.0 8.2 2.1 0.0 0.4 2.3 8.9 0.9 0.6 0.0 0.0 Cycle Q Clear(g_c), s 6.7 0.0 8.2 2.4 0.0 0.4 2.3 8.9 0.9 0.6 0.0 0.0 Prop In Lane 1.00	Sat Flow, veh/h		1870	1585	1126	228	1585	1781	5106		1781	3554	1585
Object O			0			0	6				44		
Cycle Q Clear(g_c), s 6.7 0.0 8.2 2.4 0.0 0.4 2.3 8.9 0.9 0.6 0.0 0.0 Prop In Lane 1.00 1.00 0.87 1.00 0.04 0.11 0.80 0.10 0.00 0.04 0.59 0.31 0.04 0.11 0.80 0.10 0.00 1.00	Grp Sat Flow(s),veh/h/ln	1405	1870	1585	1354	0	1585	1781	1702	1585	1781	1777	1585
Prop In Lane 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Q Serve(g_s), s		0.0				0.4			0.9	0.6	0.0	
Lane Grp Cap(c), veh/h 156 165 139 175 0 139 259 3919 1216 416 2694 1202 V/C Ratio(X) 0.33 0.00 0.80 0.17 0.00 0.04 0.59 0.31 0.04 0.11 0.80 0.10 Avail Cap(c_a), veh/h 284 335 284 297 0 284 297 3919 1216 441 2694 1202 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		6.7	0.0	8.2		0.0	0.4	2.3	8.9	0.9	0.6	0.0	0.0
V/C Ratio(X) 0.33 0.00 0.80 0.17 0.00 0.04 0.59 0.31 0.04 0.11 0.80 0.10 Avail Cap(c_a), veh/h 284 335 284 297 0 284 297 3919 1216 441 2694 1202 HCM Platoon Ratio 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.00</td><td></td><td></td><td></td><td></td><td>1.00</td></td<>								1.00					1.00
Avail Cap(c_a), veh/h	Lane Grp Cap(c), veh/h	156	165	139		0	139	259	3919	1216	416	2694	1202
HCM Platon Ratio	V/C Ratio(X)					0.00						0.80	
Upstream Filter(I) 1.00 0.00 1.00 1.00 0.00 1.00 1.00 1.0	Avail Cap(c_a), veh/h	284	335	284	297	0	284	297	3919	1216	441	2694	1202
Uniform Delay (d), s/veh 54.1 0.0 53.7 50.9 0.0 50.1 2.6 4.3 3.4 2.9 0.0 0.0 lncr Delay (d2), s/veh 1.2 0.0 9.8 0.5 0.0 0.1 2.4 0.2 0.1 0.1 2.4 0.1 lnitial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00			2.00	2.00
Incr Delay (d2), s/veh													
Initial Q Delay(d3),s/veh													
%ile BackOfQ(50%),veh/ln 1.6 0.0 3.7 0.9 0.0 0.2 0.8 2.7 0.3 0.2 0.9 0.0 Unsig. Movement Delay, s/veh 55.4 0.0 63.5 51.4 0.0 50.2 5.0 4.5 3.4 3.0 2.4 0.1 LnGrp LOS E A E D A D A A A A A A Approach Vol, veh/h 163 36 1435 2311 Approach Delay, s/veh 60.9 51.2 4.5 2.3 Approach LOS E D A A A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 8.3 96.6 15.1 9.5 95.5 15.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+I1), s 2.6 10.9 10.2 4													
Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 55.4 0.0 63.5 51.4 0.0 50.2 5.0 4.5 3.4 3.0 2.4 0.1 LnGrp LOS E A E D A D A A A A A A A A A A A A A A													
LnGrp Delay(d),s/veh 55.4 0.0 63.5 51.4 0.0 50.2 5.0 4.5 3.4 3.0 2.4 0.1 LnGrp LOS E A E D A D A B B B			0.0	3.7	0.9	0.0	0.2	8.0	2.7	0.3	0.2	0.9	0.0
LnGrp LOS E A E D A D A B B B B B													
Approach Vol, veh/h 163 36 1435 2311 Approach Delay, s/veh 60.9 51.2 4.5 2.3 Approach LOS E D A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 8.3 96.6 15.1 9.5 95.5 15.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 77.5 21.5 Max Q Clear Time (g_c+11), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0					51.4	0.0	50.2	5.0	4.5			2.4	0.1
Approach Delay, s/veh 60.9 51.2 4.5 2.3 Approach LOS E D A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 8.3 96.6 15.1 9.5 95.5 15.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+I1), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0	LnGrp LOS	E	Α	E	D	A	D	A	Α	Α	A	Α	<u>A</u>
Approach LOS	Approach Vol, veh/h		163			36			1435			2311	
Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 8.3 96.6 15.1 9.5 95.5 15.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0	Approach Delay, s/veh		60.9			51.2			4.5			2.3	
Phs Duration (G+Y+Rc), s 8.3 96.6 15.1 9.5 95.5 15.1 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0	Approach LOS		Е			D			Α			Α	
Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0	Timer - Assigned Phs	1	2		4	5	6		8				
Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0	Phs Duration (G+Y+Rc), s	8.3	96.6		15.1	9.5	95.5		15.1				
Max Green Setting (Gmax), s 5.5 79.5 21.5 7.5 77.5 21.5 Max Q Clear Time (g_c+l1), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0	Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Q Clear Time (g_c+l1), s 2.6 10.9 10.2 4.3 2.0 4.4 Green Ext Time (p_c), s 0.0 13.2 0.3 0.1 43.4 0.1 Intersection Summary HCM 6th Ctrl Delay 6.0		5.5			21.5	7.5	77.5		21.5				
Intersection Summary HCM 6th Ctrl Delay 6.0		2.6	10.9		10.2	4.3	2.0		4.4				
HCM 6th Ctrl Delay 6.0					0.3	0.1	43.4		0.1				
HCM 6th Ctrl Delay 6.0	Intersection Summary												
,				6.0									
	HCM 6th LOS			A									

1: Tower Road & 81st Avenue

	۶	→	•	•	•	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7		ર્ન	7	7	ተተተ	7	7	44	7
Traffic Volume (vph)	64	1	121	32	2	12	56	2006	19	5	1537	61
Future Volume (vph)	64	1	121	32	2	12	56	2006	19	5	1537	61
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	25.0	25.0	25.0	25.0	25.0	25.0	12.0	85.0	85.0	10.0	83.0	83.0
Total Split (%)	20.8%	20.8%	20.8%	20.8%	20.8%	20.8%	10.0%	70.8%	70.8%	8.3%	69.2%	69.2%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	13.6	13.6	13.6		13.6	13.6	96.9	95.3	95.3	92.9	88.4	88.4
Actuated g/C Ratio	0.11	0.11	0.11		0.11	0.11	0.81	0.79	0.79	0.77	0.74	0.74
v/c Ratio	0.62	0.00	0.52		0.33	0.11	0.29	0.52	0.02	0.03	0.63	0.07
Control Delay	67.0	44.0	21.6		53.0	1.9	5.9	5.3	0.1	2.6	6.4	1.4
Queue Delay	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	67.0	44.0	21.6		53.0	1.9	5.9	5.3	0.1	2.6	6.4	1.4
LOS	Е	D	С		D	Α	Α	Α	Α	Α	Α	Α
Approach Delay		39.7			36.8			5.3			6.1	
Approach LOS		D			D			Α			А	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.63

Intersection Signal Delay: 8.1
Intersection Capacity Utilization 65.4%

Analysis Period (min) 15

Intersection LOS: A ICU Level of Service C

	۶	→	*	•	←	4	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7		र्स	7	7	ተተተ	7		^	7
Traffic Volume (veh/h)	64	1	121	32	2	12	56	2006	19	5	1537	61
Future Volume (veh/h)	64	1	121	32	2	12	56	2006	19	5	1537	61
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	94	1	142	48	4	24	69	2112	25	6	1635	86
Peak Hour Factor	0.68	0.92	0.85	0.67	0.50	0.50	0.81	0.95	0.75	0.78	0.94	0.71
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	179	230	195	201	15	195	332	3865	1200	184	2584	1152
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.04	0.76	0.76	0.02	1.00	1.00
Sat Flow, veh/h	1382	1870	1585	1167	118	1585	1781	5106	1585	1781	3554	1585
Grp Volume(v), veh/h	94	1	142	52	0	24	69	2112	25	6	1635	86
Grp Sat Flow(s), veh/h/ln	1382	1870	1585	1285	0	1585	1781	1702	1585	1781	1777	1585
Q Serve(g_s), s	8.0	0.1	10.4	4.2	0.0	1.6	1.1	20.6	0.5	0.1	0.0	0.0
Cycle Q Clear(g_c), s	12.4	0.1	10.4	4.4	0.0	1.6	1.1	20.6	0.5	0.1	0.0	0.0
Prop In Lane	1.00		1.00	0.92	_	1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	179	230	195	216	0	195	332	3865	1200	184	2584	1152
V/C Ratio(X)	0.52	0.00	0.73	0.24	0.00	0.12	0.21	0.55	0.02	0.03	0.63	0.07
Avail Cap(c_a), veh/h	246	320	271	277	0	271	377	3865	1200	252	2584	1152
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.82	0.82	0.82
Uniform Delay (d), s/veh	53.7	46.2	50.7	48.0	0.0	46.9	3.2	6.0	3.6	5.4	0.0	0.0
Incr Delay (d2), s/veh	2.4	0.0	6.0	0.6	0.0	0.3	0.3	0.6	0.0	0.1	1.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.9	0.0	4.4	1.5	0.0	0.7	0.4	6.5	0.1	0.0	0.4	0.0
Unsig. Movement Delay, s/veh		4/ 2	F/ 7	40 /	0.0	17 1	2 5	/ /	2 /	гг	1.0	0.1
LnGrp Delay(d),s/veh	56.1	46.2 D	56.7 E	48.6	0.0	47.1 D	3.5	6.6 A	3.6	5.5	1.0	0.1
LnGrp LOS	<u>E</u>		<u>E</u>	D	A 7/	U	A		A	A	A 1707	A
Approach Vol, veh/h		237			76			2206			1727	
Approach LOS		56.4			48.2			6.5			1.0	
Approach LOS		Ł			D			А			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.4	95.3		19.3	9.0	91.8		19.3				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.5	80.5		20.5	7.5	78.5		20.5				
Max Q Clear Time (g_c+I1), s	2.1	22.6		14.4	3.1	2.0		6.4				
Green Ext Time (p_c), s	0.0	32.0		0.4	0.0	24.6		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			7.8									_
HCM 6th LOS			Α									

1: Tower Road & 81st Avenue

	۶	→	•	•	←	•	•	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7		ર્ન	7	ሻ	ተተተ	7	7	^	7
Traffic Volume (vph)	77	2	80	17	2	4	121	1154	35	26	1995	80
Future Volume (vph)	77	2	80	17	2	4	121	1154	35	26	1995	80
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	14.0	87.5	87.5	10.0	83.5	83.5
Total Split (%)	18.8%	18.8%	18.8%	18.8%	18.8%	18.8%	11.7%	72.9%	72.9%	8.3%	69.6%	69.6%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	14.8	14.8	14.8		14.8	14.8	95.8	88.1	88.1	88.1	82.5	82.5
Actuated g/C Ratio	0.12	0.12	0.12		0.12	0.12	0.80	0.73	0.73	0.73	0.69	0.69
v/c Ratio	0.71	0.03	0.42		0.17	0.02	0.75	0.32	0.04	0.12	0.89	0.11
Control Delay	72.6	44.5	21.1		47.6	0.2	34.6	9.1	3.9	4.2	23.0	3.1
Queue Delay	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	72.6	44.5	21.1		47.6	0.2	34.6	9.1	3.9	4.2	23.0	3.1
LOS	Е	D	С		D	Α	С	Α	Α	Α	С	Α
Approach Delay		47.5			39.7			11.6			21.6	
Approach LOS		D			D			В			С	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 19.8 Intersection LOS: B
Intersection Capacity Utilization 84.0% ICU Level of Service E

Analysis Period (min) 15

	۶	→	•	•	←	4	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7		र्स	7	ሻ	ተተተ	7	ሻ	^	7
Traffic Volume (veh/h)	77	2	80	17	2	4	121	1154	35	26	1995	80
Future Volume (veh/h)	77	2	80	17	2	4	121	1154	35	26	1995	80
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	40=0		No	4070	4070	No		40=0	No	40=0
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	120	8	113	26	4	6	149	1202	49	42	2168	119
Peak Hour Factor	0.64	0.25	0.71	0.66	0.50	0.69	0.81	0.96	0.71	0.62	0.92	0.67
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	204	230	195	193	26	195	251	3744	1162	405	2570	1146
Arrive On Green	0.12	0.12	0.12	0.12	0.12	0.12	0.04	0.73	0.73	0.06	1.00	1.00
Sat Flow, veh/h	1405	1870	1585	1115	211	1585	1781	5106	1585	1781	3554	1585
Grp Volume(v), veh/h	120	1070	113	30	0	6 1505	149	1202	49	42	2168	119
Grp Sat Flow(s), veh/h/ln	1405	1870 0.5	1585 8.1	1326	0.0	1585	1781 2.6	1702 9.9	1585	1781 0.7	1777 0.0	1585
Q Serve(g_s), s Cycle Q Clear(g_c), s	10.1 12.5	0.5	8.1	2.0 2.5	0.0	0.4	2.6	9.9	1.0 1.0	0.7	0.0	0.0
Prop In Lane	1.00	0.5	1.00	0.87	0.0	1.00	1.00	9.9	1.00	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	204	230	1.00	219	0	1.00	251	3744	1162	405	2570	1146
V/C Ratio(X)	0.59	0.03	0.58	0.14	0.00	0.03	0.59	0.32	0.04	0.10	0.84	0.10
Avail Cap(c_a), veh/h	242	281	238	255	0.00	238	318	3744	1162	431	2570	1146
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.94	0.94	0.94
Uniform Delay (d), s/veh	52.8	46.4	49.7	47.2	0.0	46.3	3.6	5.6	4.4	3.9	0.0	0.0
Incr Delay (d2), s/veh	2.7	0.1	2.7	0.3	0.0	0.1	2.2	0.2	0.1	0.1	3.4	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.7	0.2	3.4	0.8	0.0	0.2	1.0	3.2	0.3	0.2	1.2	0.1
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	55.5	46.4	52.4	47.5	0.0	46.4	5.9	5.8	4.5	4.0	3.4	0.2
LnGrp LOS	Ε	D	D	D	Α	D	Α	Α	Α	Α	Α	Α
Approach Vol, veh/h		241			36			1400			2329	
Approach Delay, s/veh		53.8			47.3			5.8			3.2	
Approach LOS		D			D			А			Α	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	8.3	92.5		19.2	9.5	91.3		19.2				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.5	83.0		18.0	9.5	79.0		18.0				
Max Q Clear Time (g_c+l1), s	2.7	11.9		14.5	4.6	2.0		4.5				
Green Ext Time (p_c), s	0.0	12.7		0.2	0.2	44.6		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			7.6									
HCM 6th LOS			Α									

	•	→	•	•	←	•	1	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7		ર્ન	7	7	ተተተ	7	ሻ	^	7
Traffic Volume (vph)	132	1	122	32	2	12	55	1959	19	5	1555	65
Future Volume (vph)	132	1	122	32	2	12	55	1959	19	5	1555	65
Turn Type	Perm	NA	Perm	Perm	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	25.0	25.0	25.0	25.0	25.0	25.0	12.0	85.0	85.0	10.0	83.0	83.0
Total Split (%)	20.8%	20.8%	20.8%	20.8%	20.8%	20.8%	10.0%	70.8%	70.8%	8.3%	69.2%	69.2%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max
Act Effct Green (s)	19.6	19.6	19.6		19.6	19.6	90.9	89.4	89.4	86.8	82.4	82.4
Actuated g/C Ratio	0.16	0.16	0.16		0.16	0.16	0.76	0.74	0.74	0.72	0.69	0.69
v/c Ratio	0.89	0.00	0.42		0.22	0.08	0.33	0.54	0.02	0.04	0.68	0.08
Control Delay	86.2	41.0	18.3		45.8	1.5	8.7	7.2	0.1	3.2	9.3	1.4
Queue Delay	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	86.2	41.0	18.3		45.8	1.5	8.7	7.2	0.1	3.2	9.3	1.4
LOS	F	D	В		D	Α	Α	Α	Α	Α	Α	Α
Approach Delay		57.3			31.8			7.1			8.8	
Approach LOS		Е			С			Α			Α	
Intono attan Common on a												

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 12.2 Intersection LOS: B
Intersection Capacity Utilization 67.2% ICU Level of Service C

Analysis Period (min) 15

	۶	→	•	•	←	•	1	†	/	/	Ţ	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		4	7		ተተተ	7	ሻ	^	- 7
Traffic Volume (veh/h)	132	1	122	32	2	12	55	1959	19	5	1555	65
Future Volume (veh/h)	132	1	122	32	2	12	55	1959	19	5	1555	65
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1070	No	1070	1070	No	1070	1070	No	1070	1070	No	1070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h Peak Hour Factor	194 0.68	0.92	144 0.85	48 0.67	4 0.50	24 0.50	68 0.81	2062 0.95	25 0.75	6 0.78	1654 0.94	92 0.71
Percent Heavy Veh, %	2	0.92	0.63	2	0.50	2	0.61	0.93	0.73	0.76	0.94	2
Cap, veh/h	248	320	271	257	19	271	314	3621	1124	175	2414	1077
Arrive On Green	0.17	0.17	0.17	0.17	0.17	0.17	0.04	0.71	0.71	0.02	1.00	1.00
Sat Flow, veh/h	1382	1870	1585	1168	113	1585	1781	5106	1585	1781	3554	1585
Grp Volume(v), veh/h	194	1	144	52	0	24	68	2062	25	6	1654	92
Grp Sat Flow(s), veh/h/ln	1382	1870	1585	1281	0	1585	1781	1702	1585	1781	1777	1585
Q Serve(g_s), s	16.4	0.1	9.9	4.0	0.0	1.5	1.3	23.6	0.6	0.1	0.0	0.0
Cycle Q Clear(q_c), s	20.5	0.1	9.9	4.1	0.0	1.5	1.3	23.6	0.6	0.1	0.0	0.0
Prop In Lane	1.00		1.00	0.92		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	248	320	271	277	0	271	314	3621	1124	175	2414	1077
V/C Ratio(X)	0.78	0.00	0.53	0.19	0.00	0.09	0.22	0.57	0.02	0.03	0.69	0.09
Avail Cap(c_a), veh/h	248	320	271	277	0	271	359	3621	1124	243	2414	1077
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.82	0.82	0.82
Uniform Delay (d), s/veh	52.1	41.3	45.4	42.9	0.0	41.9	4.7	8.5	5.2	7.6	0.0	0.0
Incr Delay (d2), s/veh	14.8	0.0	2.0	0.3	0.0	0.1	0.3	0.7	0.0	0.1	1.3	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.9	0.0	4.1	1.4	0.0	0.6	0.5	8.1	0.2	0.0	0.4	0.0
Unsig. Movement Delay, s/veh										_ ,		
LnGrp Delay(d),s/veh	66.8	41.3	47.4	43.3	0.0	42.0	5.0	9.2	5.2	7.6	1.3	0.1
LnGrp LOS	E	D	D	D	A	D	A	A	A	A	A	A
Approach Vol, veh/h		339			76			2155			1752	
Approach Delay, s/veh		58.5			42.9			9.0			1.3	
Approach LOS		Е			D			Α			Α	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.4	89.6		25.0	9.0	86.0		25.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.5	80.5		20.5	7.5	78.5		20.5				
Max Q Clear Time (g_c+l1), s	2.1	25.6		22.5	3.3	2.0		6.1				
Green Ext Time (p_c), s	0.0	29.9		0.0	0.0	25.2		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			10.3									
HCM 6th LOS			В									

	ᄼ	-	•	←	4	†	~	-	↓	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	ĵ»	7	£	1,4	ተተተ	7	¥	ተተተ	7	
Traffic Volume (vph)	95	0	20	5	840	1610	35	25	2825	325	
Future Volume (vph)	95	0	20	5	840	1610	35	25	2825	325	
Turn Type	Prot	NA	Perm	NA	Prot	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7	4		8	5	2		1	6		
Permitted Phases			8				2	6		6	
Detector Phase	7	4	8	8	5	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	
Total Split (s)	10.0	32.5	22.5	22.5	28.0	78.0	78.0	9.5	59.5	59.5	
Total Split (%)	8.3%	27.1%	18.8%	18.8%	23.3%	65.0%	65.0%	7.9%	49.6%	49.6%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	5.5	13.9	8.0	8.0	37.6	90.7	90.7	60.9	55.0	55.0	
Actuated g/C Ratio	0.05	0.12	0.07	0.07	0.31	0.76	0.76	0.51	0.46	0.46	
v/c Ratio	0.66	0.58	0.25	0.08	0.85	0.44	0.03	0.13	1.32	0.43	
Control Delay	76.1	9.0	59.1	39.0	41.2	11.4	0.5	9.6	174.7	9.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	76.1	9.0	59.1	39.0	41.2	11.4	0.5	9.6	174.7	9.6	
LOS	Е	Α	Е	D	D	В	Α	Α	F	А	
Approach Delay		28.6		52.8		21.6			156.6		
Approach LOS		С		D		С			F		

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.32

Intersection Signal Delay: 94.2 Intersection LOS: F
Intersection Capacity Utilization 106.4% ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 1: Tower Road & 81st Avenue

	۶	→	•	•	—	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	₽		ሻ	₽		16	ተተተ	7	7	ተተተ	7
Traffic Volume (veh/h)	95	0	230	20	5	5	840	1610	35	25	2825	325
Future Volume (veh/h)	95	0	230	20	5	5	840	1610	35	25	2825	325
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	103	0	54	22	5	5	913	1677	38	27	3071	353
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	154	0	192	113	34	34	677	3786	1175	266	2912	904
Arrive On Green	0.04	0.00	0.12	0.04	0.04	0.04	0.20	0.74	0.74	0.05	1.00	1.00
Sat Flow, veh/h	3456	0	1585	1350	858	858	3456	5106	1585	1781	5106	1585
Grp Volume(v), veh/h	103	0	54	22	0	10	913	1677	38	27	3071	353
Grp Sat Flow(s), veh/h/ln	1728	0	1585	1350	0	1716	1728	1702	1585	1781	1702	1585
Q Serve(g_s), s	3.5	0.0	3.7	1.9	0.0	0.7	23.5	15.2	0.8	0.7	68.4	0.0
Cycle Q Clear(g_c), s	3.5	0.0	3.7	1.9	0.0	0.7	23.5	15.2	0.8	0.7	68.4	0.0
Prop In Lane	1.00		1.00	1.00	_	0.50	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	154	0	192	113	0	67	677	3786	1175	266	2912	904
V/C Ratio(X)	0.67	0.00	0.28	0.19	0.00	0.15	1.35	0.44	0.03	0.10	1.05	0.39
Avail Cap(c_a), veh/h	158	0	370	263	0	257	677	3786	1175	296	2912	904
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.94	0.94	0.94
Uniform Delay (d), s/veh	56.5	0.0	48.0	56.3	0.0	55.7	48.2	6.0	4.1	9.7	0.0	0.0
Incr Delay (d2), s/veh	10.0	0.0	0.8	0.8	0.0	1.0	166.8	0.4	0.1	0.2	32.9	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.8	0.0	1.5	0.7	0.0	0.3	25.7	4.9	0.2	0.3	8.9	0.3
Unsig. Movement Delay, s/veh		0.0	40.7	F7 1	0.0	F/ 7	21F A	/ /	4.2	9.9	22.0	1.0
LnGrp Delay(d),s/veh	66.5 E	0.0	48.7 D	57.1 E	0.0	56.7 E	215.0 F	6.4 A			32.9 F	1.2
LnGrp LOS	<u> </u>	A	U	<u>E</u>	A 22	<u> </u>	Г		A	A		A
Approach Vol, veh/h		157			32			2628			3451	
Approach LOS		60.4			57.0			78.8			29.5	
Approach LOS		Ł			Ł			Ł			С	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.5	93.5		19.1	28.0	72.9	9.8	9.2				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	73.5		28.0	23.5	55.0	5.5	18.0				
Max Q Clear Time (g_c+I1), s	2.7	17.2		5.7	25.5	70.4	5.5	3.9				
Green Ext Time (p_c), s	0.0	21.4		0.2	0.0	0.0	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			51.1									
HCM 6th LOS			D									

	•	-	•	←	4	†	~	-	↓	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	f)	7	f)	14.54	ተተተ	7	7	ተተተ	7	
Traffic Volume (vph)	270	1	30	5	335	2850	20	5	2125	125	
Future Volume (vph)	270	1	30	5	335	2850	20	5	2125	125	
Turn Type	Prot	NA	Perm	NA	Prot	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7	4		8	5	2		1	6		
Permitted Phases			8				2	6		6	
Detector Phase	7	4	8	8	5	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	
Total Split (s)	21.0	44.0	23.0	23.0	20.0	66.0	66.0	10.0	56.0	56.0	
Total Split (%)	17.5%	36.7%	19.2%	19.2%	16.7%	55.0%	55.0%	8.3%	46.7%	46.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	20.4	39.5	16.8	16.8	15.2	69.5	69.5	57.3	51.8	51.8	
Actuated g/C Ratio	0.17	0.33	0.14	0.14	0.13	0.58	0.58	0.48	0.43	0.43	
v/c Ratio	0.50	1.04	0.49	0.09	0.84	1.02	0.02	0.03	1.03	0.18	
Control Delay	50.7	74.4	71.6	23.3	68.4	49.8	0.1	9.8	54.0	3.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	50.7	74.4	71.6	23.3	68.4	49.8	0.1	9.8	54.0	3.0	
LOS	D	Е	Е	С	Е	D	Α	Α	D	Α	
Approach Delay		67.3		52.8		51.4			51.1		
Approach LOS		Е		D		D			D		

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.04

Intersection Signal Delay: 53.6 Intersection LOS: D
Intersection Capacity Utilization 108.9% ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 1: Tower Road & 81st Avenue

	۶	→	•	•	←	4	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14	1>		ሻ	₽		ሻሻ	ተተተ	7	ሻ	ተተተ	7
Traffic Volume (veh/h)	270	1	620	30	5	15	335	2850	20	5	2125	125
Future Volume (veh/h)	270	1	620	30	5	15	335	2850	20	5	2125	125
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	293	1	348	33	5	16	364	3000	22	5	2261	136
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.92	0.92	0.94	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	357	1	408	110	46	147	420	3182	988	78	2594	805
Arrive On Green	0.10	0.26	0.26	0.12	0.12	0.12	0.12	0.62	0.62	0.01	1.00	1.00
Sat Flow, veh/h	3456	5	1581	1032	392	1253	3456	5106	1585	1781	5106	1585
Grp Volume(v), veh/h	293	0	349	33	0	21	364	3000	22	5	2261	136
Grp Sat Flow(s), veh/h/ln	1728	0	1586	1032	0	1645	1728	1702	1585	1781	1702	1585
Q Serve(g_s), s	10.0	0.0	25.1	3.8	0.0	1.4	12.4	64.4	0.6	0.2	0.0	0.0
Cycle Q Clear(g_c), s	10.0	0.0	25.1	12.0	0.0	1.4	12.4	64.4	0.6	0.2	0.0	0.0
Prop In Lane	1.00	٥	1.00	1.00	٥	0.76	1.00	2102	1.00	1.00	2504	1.00
Lane Grp Cap(c), veh/h	357	0.00	409	110 0.30	0.00	193	420	3182 0.94	988	78 0.06	2594	805
V/C Ratio(X)	0.82 475	0.00	0.85 522	148	0.00	0.11 254	0.87 446	3182	0.02 988	148	0.87 2594	0.17 805
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.82	0.82	0.82
Uniform Delay (d), s/veh	52.7	0.00	42.4	56.1	0.00	47.4	51.8	20.7	8.6	25.4	0.02	0.02
Incr Delay (d2), s/veh	8.4	0.0	10.6	1.5	0.0	0.2	15.7	7.3	0.0	0.3	3.6	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	4.7	0.0	11.0	1.0	0.0	0.6	6.3	25.6	0.2	0.1	0.9	0.1
Unsig. Movement Delay, s/veh		0.0	11.0	1.0	0.0	0.0	0.0	20.0	0.2	0.1	0.7	0.1
LnGrp Delay(d),s/veh	61.1	0.0	53.0	57.6	0.0	47.6	67.5	27.9	8.7	25.7	3.6	0.4
LnGrp LOS	E	A	D	E	A	D	E	C	A	C	A	A
Approach Vol, veh/h		642			54			3386			2402	
Approach Delay, s/veh		56.7			53.7			32.1			3.5	
Approach LOS		E			D			C			A	
	1			4		,	7					
Timer - Assigned Phs	<u> </u>	2 70.2		<u>4</u>	5	6	7	8				
Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s	5.3	79.3		35.5	19.1	65.5	16.9	18.6				
Max Green Setting (Gmax), s	4.5 5.5	4.5 61.5		4.5 39.5	4.5 15 .5	4.5 51.5	4.5 16.5	4.5 18.5				
Max Q Clear Time (g_c+l1), s	2.2	66.4		27.1	14.4	2.0	12.0	14.0				
Green Ext Time (p_c), s	0.0	0.0		1.8	0.2	33.2	0.4	0.0				
<u> </u>	0.0	0.0		1.0	0.2	33.2	0.4	0.0				
Intersection Summary			0.1.1									
HCM 6th Ctrl Delay			24.1									
HCM 6th LOS			С									

1: Tower Road & 81st Avenue

	•	-	•	←	1	†	~	-	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	₽	7	₽	77	ተተተ	7	ሻ	ተተተ	7	
Traffic Volume (vph)	139	2	20	5	837	1582	34	24	2840	328	
Future Volume (vph)	139	2	20	5	837	1582	34	24	2840	328	
Turn Type	Prot	NA	Perm	NA	Prot	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7	4		8	5	2		1	6		
Permitted Phases			8				2	6		6	
Detector Phase	7	4	8	8	5	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	
Total Split (s)	10.0	32.5	22.5	22.5	28.0	78.0	78.0	9.5	59.5	59.5	
Total Split (%)	8.3%	27.1%	18.8%	18.8%	23.3%	65.0%	65.0%	7.9%	49.6%	49.6%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	5.5	13.9	8.1	8.1	37.6	90.7	90.7	60.9	55.0	55.0	
Actuated g/C Ratio	0.05	0.12	0.07	0.07	0.31	0.76	0.76	0.51	0.46	0.46	
v/c Ratio	0.96	0.62	0.25	0.08	0.85	0.43	0.03	0.13	1.32	0.43	
Control Delay	119.7	12.8	59.0	39.0	41.2	11.2	0.5	9.5	177.7	9.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	119.7	12.8	59.0	39.0	41.2	11.2	0.5	9.5	177.7	9.7	
LOS	F	В	Е	D	D	В	Α	Α	F	А	
Approach Delay		52.8		52.8		21.6			159.2		
Approach LOS		D		D		С			F		

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.32

Intersection Signal Delay: 97.1 Intersection LOS: F
Intersection Capacity Utilization 106.6% ICU Level of Service G

Analysis Period (min) 15

	۶	→	•	•	←	4	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14	1>		ሻ	1>		ሻሻ	ተተተ	7	ሻ	ተተተ	7
Traffic Volume (veh/h)	139	2	231	20	5	5	837	1582	34	24	2840	328
Future Volume (veh/h)	139	2	231	20	5	5	837	1582	34	24	2840	328
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	151	2	55	22	5	5	910	1648	37	26	3087	357
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.96	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	158	7	189	113	34	34	677	3781	1174	270	2904	902
Arrive On Green	0.05	0.12	0.12	0.04	0.04	0.04	0.20	0.74	0.74	0.05	1.00	1.00
Sat Flow, veh/h	3456	56	1538	1346	858	858	3456	5106	1585	1781	5106	1585
Grp Volume(v), veh/h	151	0	57	22	0	10	910	1648	37	26	3087	357
Grp Sat Flow(s), veh/h/ln	1728	0	1594	1346	0	1716	1728	1702	1585	1781	1702	1585
Q Serve(g_s), s	5.2	0.0	3.9	1.9	0.0	0.7	23.5	14.8	0.7	0.7	68.3	0.0
Cycle Q Clear(g_c), s	5.2	0.0	3.9	1.9	0.0	0.7	23.5	14.8	0.7	0.7	68.3	0.0
Prop In Lane	1.00	_	0.96	1.00	_	0.50	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	158	0	196	113	0	68	677	3781	1174	270	2904	902
V/C Ratio(X)	0.95	0.00	0.29	0.19	0.00	0.15	1.34	0.44	0.03	0.10	1.06	0.40
Avail Cap(c_a), veh/h	158	0	372	262	0	257	677	3781	1174	301	2904	902
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.94	0.94	0.94
Uniform Delay (d), s/veh	57.1	0.0	47.9	56.3	0.0	55.7	48.2	6.0	4.1	9.8	0.0	0.0
Incr Delay (d2), s/veh	57.5	0.0	0.8	0.8	0.0	1.0	164.9	0.4	0.0	0.1	36.0	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	0.0	1.6	0.7	0.0	0.3	25.6	4.8	0.2	0.3	9.7	0.3
Unsig. Movement Delay, s/veh		0.0	40.7	F7 1	0.0	F/ 7	212.1	/ 2	4.0	10.0	27.0	1.0
LnGrp Delay(d),s/veh	114.7	0.0	48.7	57.1	0.0	56.7	213.1	6.3	4.2	10.0	36.0	1.2
LnGrp LOS	<u> </u>	A 200	D	<u>E</u>	A 22	<u>E</u>	F	A	A	A	F 2470	<u>A</u>
Approach Vol, veh/h		208			32			2595			3470	
Approach Delay, s/veh		96.6			57.0			78.8			32.3	
Approach LOS		ŀ			Ł			Ł			С	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.4	93.4		19.2	28.0	72.8	10.0	9.2				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	73.5		28.0	23.5	55.0	5.5	18.0				
Max Q Clear Time (g_c+l1), s	2.7	16.8		5.9	25.5	70.3	7.2	3.9				
Green Ext Time (p_c), s	0.0	20.8		0.2	0.0	0.0	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			53.7									
HCM 6th LOS			D									

	•	-	•	←	4	†	~	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻሻ	f)	7	f)	ሻሻ	ተተተ	7	7	ተተተ	7	
Traffic Volume (vph)	338	1	30	5	334	2803	20	5	2143	129	
Future Volume (vph)	338	1	30	5	334	2803	20	5	2143	129	
Turn Type	Prot	NA	Perm	NA	Prot	NA	Perm	pm+pt	NA	Perm	
Protected Phases	7	4		8	5	2		1	6		
Permitted Phases			8				2	6		6	
Detector Phase	7	4	8	8	5	2	2	1	6	6	
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5	
Total Split (s)	21.0	44.0	23.0	23.0	20.0	66.0	66.0	10.0	56.0	56.0	
Total Split (%)	17.5%	36.7%	19.2%	19.2%	16.7%	55.0%	55.0%	8.3%	46.7%	46.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lead/Lag	Lead		Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	
Lead-Lag Optimize?	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	None	None	None	None	C-Max	C-Max	None	C-Max	C-Max	
Act Effct Green (s)	21.1	39.5	16.1	16.1	15.1	69.5	69.5	57.4	51.9	51.9	
Actuated g/C Ratio	0.18	0.33	0.13	0.13	0.13	0.58	0.58	0.48	0.43	0.43	
v/c Ratio	0.61	1.04	0.49	0.09	0.84	1.00	0.02	0.03	1.04	0.18	
Control Delay	52.5	75.4	71.9	23.3	68.2	45.3	0.1	10.0	56.7	3.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	52.5	75.4	71.9	23.3	68.2	45.3	0.1	10.0	56.7	3.2	
LOS	D	Е	Е	С	Е	D	Α	Α	Е	А	
Approach Delay		67.4		53.0		47.5			53.5		
Approach LOS		Е		D		D			D		

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.04

Intersection Signal Delay: 52.7 Intersection LOS: D
Intersection Capacity Utilization 108.1% ICU Level of Service G

Analysis Period (min) 15

	۶	→	•	•	←	•	1	†	~	/	+	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	₽		7	₽		ሻሻ	ተተተ	7	7	ተተተ	7
Traffic Volume (veh/h)	338	1	621	30	5	15	334	2803	20	5	2143	129
Future Volume (veh/h)	338	1	621	30	5	15	334	2803	20	5	2143	129
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	367	1	349	33	5	16	363	2951	22	5	2280	140
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.95	0.92	0.92	0.94	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h Arrive On Green	426	1	409	110	38	123	419	3178	987	80	2592	805
	0.12	0.26	0.26	0.10	0.10	0.10	0.12	0.62	0.62	0.01 1781	1.00	1.00
Sat Flow, veh/h	3456	5	1581	1031	392	1253	3456	5106	1585		5106	1585
Grp Volume(v), veh/h	367	0	350	33	0	21	363	2951	22	5	2280	140
Grp Sat Flow(s), veh/h/ln	1728	0	1586	1031	0.0	1645	1728	1702	1585	1781	1702	1585
Q Serve(g_s), s	12.5 12.5	0.0	25.2 25.2	3.8 9.7	0.0	1.4 1.4	12.4 12.4	62.0 62.0	0.6	0.2	0.0	0.0
Cycle Q Clear(g_c), s Prop In Lane	1.00	0.0	1.00	1.00	0.0	0.76	1.00	02.0	1.00	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	426	0	410	110	0	161	419	3178	987	80	2592	805
V/C Ratio(X)	0.86	0.00	0.85	0.30	0.00	0.13	0.87	0.93	0.02	0.06	0.88	0.17
Avail Cap(c_a), veh/h	475	0.00	522	168	0.00	254	446	3178	987	150	2592	805
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	0.82	0.82	0.82
Uniform Delay (d), s/veh	51.6	0.0	42.3	56.1	0.0	49.5	51.8	20.3	8.7	24.4	0.02	0.02
Incr Delay (d2), s/veh	13.8	0.0	10.6	1.5	0.0	0.4	15.7	6.2	0.0	0.3	3.9	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	6.2	0.0	11.0	1.0	0.0	0.6	6.3	24.5	0.2	0.1	0.9	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	65.4	0.0	52.9	57.6	0.0	49.8	67.4	26.4	8.7	24.7	3.9	0.4
LnGrp LOS	Е	Α	D	Е	Α	D	Е	С	Α	С	Α	Α
Approach Vol, veh/h		717			54			3336			2425	
Approach Delay, s/veh		59.3			54.6			30.8			3.7	
Approach LOS		Е			D			С			Α	
Timer - Assigned Phs	1	2		4	5	6	7	8				
Phs Duration (G+Y+Rc), s	5.3	79.2		35.5	19.0	65.4	19.3	16.3				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.5	61.5		39.5	15.5	51.5	16.5	18.5				
Max Q Clear Time (q_c+l1), s	2.2	64.0		27.2	14.4	2.0	14.5	11.7				
Green Ext Time (p_c), s	0.0	0.0		1.8	0.2	33.6	0.3	0.1				
•	0.0	0.0		1.0	0.2	00.0	0.0	0.1				
Intersection Summary			24.1									
HCM 6th Ctrl Delay			24.1									
HCM 6th LOS			С									

0.2 EBT 44 44 0 Free # 0 0 92 2 48 **Iajor1 0	- - -	WBL 0 0 0 Free 92 2 0 Major2	0 0 92 2 180	NBL 0 0 0 Stop - 0 92 2 0 Minor1	NBR 4 4 0 Stop None 0 92 2 4 48 - 6.22
44 44 0 Free - - # 0 0 92 2 48	0 0 0 Free None - - - 92 2 0	0 0 0 Free - - - 92 2 0 Major2 - -	166 166 0 Free None 0 0 92 2 180	0 0 Stop - 0 0 92 2 0	4 4 0 Stop None 0 - - 92 2 4
44 44 0 Free - - # 0 0 92 2 48	0 0 0 Free None - - - 92 2 0	0 0 0 Free - - - 92 2 0 Major2 - -	166 166 0 Free None 0 0 92 2 180	0 0 Stop - 0 0 92 2 0	4 4 0 Stop None 0 - - 92 2 4
44 44 0 Free - # 0 0 92 2 48 Major1 0 - -	0 0 Free None - - - 92 2 0	0 0 Free - - - 92 2 0 Major2 - -	166 166 0 Free None - 0 0 92 2 180	0 0 Stop - 0 0 92 2 0	4 4 0 Stop None 0 - - 92 2 4
44 0 Free - # 0 0 92 2 48 Major1 0 - -	0 0 Free None - - - 92 2 0	0 0 Free - - - 92 2 0 Major2 - -	166 0 Free None - 0 0 92 2 180	0 0 Stop - 0 0 92 2 0	4 0 Stop None 0 - 92 2 4
0 Free - # 0 0 92 2 48 Major1 0 - -	0 Free None - - - 92 2 0	0 Free - - - 92 2 0 Major2 - -	0 Free None - 0 0 92 2 180	0 Stop - 0 0 92 2 0	0 Stop None 0 - - 92 2 4
Free	Free None	Free	Free None - 0 0 0 92 2 180 N	Stop 0 0 92 2 0 Minor1	Stop None 0 - 92 2 4 48 - 6.22
# 0 0 92 2 48 Major1 0 -	None 92 2 0	- - 92 2 0 Major2 - -	None	0 0 92 2 0 Minor1	None
# 0 0 92 2 48 Major1 0 -	- - - 92 2 0	- 92 2 0 Major2 - -	0 0 92 2 180	0 0 92 2 0 Minor1	0 - 92 2 4 - 6.22
# 0 0 92 2 48 Major1 0 -	- - 92 2 0	- 92 2 0 Major2 - -	0 0 92 2 180	0 0 92 2 0 Minor1 -	- 92 2 4 48 - 6.22
0 92 2 48 Major1 0 -	92 2 0	92 2 0 Major2 - -	0 92 2 180	0 92 2 0 Minor1 -	92 2 4 48 - 6.22
92 2 48 Major1 0 - -	92 2 0 - - -	92 2 0 Major2 - - -	92 2 180 N - - -	92 2 0 <u>Minor1</u> -	92 2 4 48 - - 6.22
2 48 1ajor1 0 -	2 0	2 0 Major2 - - -	2 180 - - -	2 0 <u>Minor1</u> - -	48 - - 6.22
48 Major1 0	- - - -	0 <u>Major2</u> - - -	180 	0 <u>//inor1</u> - -	48 - 6.22
1ajor1 0 - - -	- - - -	Major2 - - - -		Minor1 - - -	48 - - 6.22
- - -	- - -	-	- - -	- - -	6.22
- - -	- - -	-	- - -	- - -	6.22
- - -	- - -	-	- - -	- - -	6.22
- - -	-	-	-	-	6.22
-	-	-	-		6.22
-	-			-	
		-	-	_	
					_
	_	_	_	_	_
_	_	_	_	_	3.318
_	0	0	_	0	1021
-	0	0	-	0	1021
-	0	0		0	-
	U	U		U	-
					1001
				-	1021
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
EB		WB		NB	
U		U			
. [EBT	WBT		
		-	-		
		-	-		
	8.5	-	-		
	Α	-	-		
	0	-	-		
	- - - - - - 0	EB 0 NBLn1 1021 0.004 8.5 A	EB WB 0 0 NBLn1 EBT 1021 - 0.004 - 8.5 - A	EB WB O O NBLn1 EBT WBT 1021 0.004 8.5 A	EB WB NB O O S 8.5 A NBLn1 EBT WBT 1021 0.004 8.5 A

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑			<u> </u>		7
Traffic Vol, veh/h	118	0	0	73	0	8
Future Vol, veh/h	118	0	0	73	0	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length	_	-	-	-	-	0
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0		-	0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	128	0	0	79	0	9
					_	
Maiau/Minau	1-!1		10:00		/!a1	
	lajor1		/lajor2		/linor1	400
Conflicting Flow All	0	-	-	-	-	128
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-		3.318
Pot Cap-1 Maneuver	-	0	0	-	0	922
Stage 1	-	0	0	-	0	-
Stage 2	-	0	0	-	0	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	-	922
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
			0		8.9	
HCM Control Delay, s	0		U			
HCM LOS					Α	
Minor Lane/Major Mvmt	: N	NBLn1	EBT	WBT		
Capacity (veh/h)		922	-	-		
HCM Lane V/C Ratio		0.009	_	-		
HCM Control Delay (s)		8.9	-	-		
HCM Lane LOS		Α	-	-		
HCM 95th %tile Q(veh)		0	-	-		

Interception						
Intersection	^					
Int Delay, s/veh	0					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^		7
Traffic Vol, veh/h	184	0	0	1069	0	4
Future Vol, veh/h	184	0	0	1069	0	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	200	0	0	1162	0	4
Major/Minor M	ajor1	N	/lajor2	N	/linor1	
Conflicting Flow All	0		<u>- 114</u>	-	-	100
Stage 1	-	-	-	-	-	100
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	0.94
Critical Hdwy Stg 2	-	-	-	-	-	-
	-		-			3.32
Follow-up Hdwy	-	-	-	-	-	936
Pot Cap-1 Maneuver	-	0	0	-	0	930
Stage 1	-		0	-	0	
Stage 2	-	0	0	-	0	-
Platoon blocked, %	-			-		027
Mov Cap-1 Maneuver	-	-	-	-	-	936
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		8.9	
HCM LOS					Α	
Minor Long/Minima		UDL 1	EDT	WDT		
Minor Lane/Major Mvmt	ſ	VBLn1	EBT	WBT		
Capacity (veh/h)		936	-	-		
HCM Lane V/C Ratio		0.005	-	-		
HCM Control Delay (s)		8.9	-	-		
HCM Lane LOS		Α	-	-		
HCM 95th %tile Q(veh)		0	-	-		

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDI	WDL	↑ ↑	NDL	NDIC
Traffic Vol, veh/h	TT 744	0	0	TT 376	0	8 1
Future Vol, veh/h	744	0	0	376	0	8
-	0	0	0	0	0	0
Conflicting Peds, #/hr						
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	809	0	0	409	0	9
Major/Minor Major/Minor	ajor1	ı	/lajor2	Λ	/linor1	
Conflicting Flow All	<u>ajui 1</u> 0	- 1	<u> </u>	- 1	-	405
Stage 1	-	-	-	-	-	400
		-	-	-	-	-
Stage 2	-		-			/ 04
Critical Hdwy	-	-	-	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.32
Pot Cap-1 Maneuver	-	0	0	-	0	595
Stage 1	-	0	0	-	0	-
Stage 2	-	0	0	-	0	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	-	595
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
A	ED		MD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		11.1	
HCM LOS					В	
Minor Lane/Major Mvmt	N	NBLn1	EBT	WBT		
	ı I		LDI	VVDT		
Capacity (veh/h)		595	-	-		
HCM Cantral Dalay (a)		0.015	-	-		
HCM Long LOS		11.1	-	-		
HCM Lane LOS		В	-	-		
HCM 95th %tile Q(veh)		0	-	-		
HCM 95th %tile Q(veh)		0	-	-		

Intersection													
Int Delay, s/veh	3.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ኘ	†	LDIX	ኘ	↑	7	NDL	4	NDIX	ODL	4	ODIC	
Traffic Vol, veh/h	3	41	3	5	149	73	4	0	46	82	0	12	
Future Vol, veh/h	3	41	3	5	149	73	4	0	46	82	0	12	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	50	-	0	-	-	-	-	-	-	
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	3	45	3	5	162	79	4	0	50	89	0	13	
Major/Minor I	Major1		N	Major2		ı	Minor1		ı	Minor2			
Conflicting Flow All	241	0	0	48	0	0	271	304	24	201	226	162	
Stage 1	241	-	-	40	-	-	53	53	- 24	172	172	102	
Stage 2					-	-	218	251	-	29	54		
Critical Hdwy	4.13		_	4.13	_		7.33	6.53	6.93	7.33	6.53	6.23	
Critical Hdwy Stg 1	1.10	_	_	-	_	_	6.53	5.53	0.70	6.13	5.53	- 0.20	
Critical Hdwy Stg 2	_	_	_	_	_	_	6.13	5.53	_	6.53	5.53	_	
Follow-up Hdwy	2.219	_	_	2.219	_	_	3.519	4.019	3.319	3.519	4.019	3.319	
Pot Cap-1 Maneuver	*1454	-	-	1558	-	-	*916	*803	1047	*916	*803	*971	
Stage 1	-	-	-	-	-	-	*954	*850	-	*917	*803	-	
Stage 2	-	-	-	-	-	-	*917	*803	-	*984	*850	-	
Platoon blocked, %	1	-	-		-	-	1	1		1	1	1	
Mov Cap-1 Maneuver	*1454	-	-	1558	-	-	*900	*799	1047	*868	*799	*971	
Mov Cap-2 Maneuver	-	-	-	-	-	-	*900	*799	-	*868	*799	-	
Stage 1	-	-	-	-	-	-	*952	*848	-	*915	*800	-	
Stage 2	-	-	-	-	-	-	*901	*800	-	*935	*848	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.5			0.2			8.7			9.6			
HCM LOS	0.5			0.2			Α			7.0 A			
TICIVI EOS													
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:					
Capacity (veh/h)			* 1454	-		1558	-	-	880				
HCM Lane V/C Ratio		0.053		-	-	0.003	-		0.116				
HCM Control Delay (s))	8.7	7.5	-	-	7.3	-	-	,				
HCM Lane LOS	,	A	A	-	-	A	-	-	A				
HCM 95th %tile Q(veh	1)	0.2	0	-	-	0	-	-	0.4				
Notes													
~: Volume exceeds ca	pacity	\$: D	elay ex	ceeds 3	00s	+: Con	nputatio	n Not I	Defined	*: A	II majo	r volume	e in platoon
			,								,		

Intersection													
Int Delay, s/veh	3.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ሻ	† 1>	LDIN	<u> </u>	<u>₩</u>	₩ M	NDL	4	NUN	JDL	4	JUIN	
Traffic Vol, veh/h	4	113	5	6	59	64	3	0	65	84	0	11	
Future Vol, veh/h	4	113	5	6	59	64	3	0	65	84	0	11	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	50		0	-	-	-		_	-	
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	4	123	5	7	64	70	3	0	71	91	0	12	
Major/Minor	Major1		N	Major2			Vinor1			Minor2			
Conflicting Flow All	134	0	0	128	0	0	253	282	64	148	214	64	
Stage 1	134	-	U	120	-	-	134	134	- 04	78	78	- 04	
Stage 2	_	-		-	-	-	119	148	-	70	136		
Critical Hdwy	4.13		_	4.13	_	-	7.33	6.53	6.93	7.33	6.53	6.23	
Critical Hdwy Stg 1	-	_	_	-	_	_	6.53	5.53	0.75	6.13	5.53	0.23	
Critical Hdwy Stg 2	_	_	_	_	_	_	6.13	5.53	_	6.53	5.53	_	
Follow-up Hdwy	2.219	_	_	2.219	_	_	3.519	4.019	3.319	3.519	4.019	3.319	
Pot Cap-1 Maneuver	1517	-	-	1457	-	-	766	678	988	*908	*741	*1049	
Stage 1	-	-	-	-	-	-	856	785	-	*990	*867	-	
Stage 2	-	-	-	-	-	-	959	821	-	*932	*783	-	
Platoon blocked, %	1	-	-		-	-	1	1		1	1	1	
Mov Cap-1 Maneuver	1517	-	-	1457	-	-	753	673	988	*838	*735	*1049	
Mov Cap-2 Maneuver	-	-	-	-	-	-	753	673	-	*838	*735	-	
Stage 1	-	-	-	-	-	-	853	783	-	*987	*863	-	
Stage 2	-	-	-	-	-	-	944	817	-	*863	*781	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.2			0.3			9			9.8			
HCM LOS	0.2			0.5			A			Α.			
TIGINI EGS													
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:					
Capacity (veh/h)		975	1517	-		1457	-	-	858				
HCM Lane V/C Ratio		0.076		-		0.004	-	-	0.12				
HCM Control Delay (s)		9	7.4	-	-	7.5	-	-	9.8				
HCM Lane LOS	\	A	A	-	-	A	-	-	A				
HCM 95th %tile Q(veh)	0.2	0	-	-	0	-	-	0.4				
Notes													
~: Volume exceeds ca	pacity	\$: D	elay ex	ceeds 3	00s	+: Con	nputation	on Not I	Defined	*: A	II majo	r volume	e in platoon

Intersection													
Int Delay, s/veh	2.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ች	↑ ⊅		ሻ	† ‡			4			4		
Traffic Vol, veh/h	5	189	3	5	1044	121	4	0	46	136	0	20	
Future Vol, veh/h	5	189	3	5	1044	121	4	0	46	136	0	20	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	50	-	-	-	-	-	-	-	-	
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	5	205	3	5	1135	132	4	0	50	148	0	22	
Major/Minor N	/lajor1		ľ	Major2		N	Minor1		ľ	Minor2			
Conflicting Flow All	1267	0	0	208	0	0	795	1494	104	1324	1429	634	
Stage 1	-	-	-	-	-	-	217	217	-	1211	1211	-	
Stage 2	-	-	-	-	-	-	578	1277	-	113	218	-	
Critical Hdwy	4.14	-	-	4.14	-	-	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.54	5.54	-	6.54	5.54	-	
Follow-up Hdwy	2.22	-	-	2.22	-	-	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	868	-	-	1360	-	-	*621	278	931	419	319	*659	
Stage 1	-	-	-	-	-	-	*765	722	-	575	515	-	
Stage 2	-	-	-	-	-	-	*621	462	-	880	721	-	
Platoon blocked, %	1	-	-		-	-	1	1		1	1	1	
Mov Cap-1 Maneuver	868	-	-	1360	-	-	*596	275	931	393	316	*659	
Mov Cap-2 Maneuver	-	-	-	-	-	-	*596	275	-	393	316	-	
Stage 1	-	-	-	-	-	-	*760	718	-	572	512	-	
Stage 2	-	-	-	-	-	-	*598	460	-	828	717	-	
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.2			0			9.3			19.6			
HCM LOS							Α			С			
Minor Lane/Major Mvm	t ſ	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1				
Capacity (veh/h)		891	868	-	-	1360	-	-	414				
HCM Lane V/C Ratio		0.061	0.006	-	-	0.004	-	-	0.41				
HCM Control Delay (s)		9.3	9.2	-	-	7.7	-	-	19.6				
HCM Lane LOS		Α	Α	-	-	Α	-	-	С				
HCM 95th %tile Q(veh)		0.2	0	-	-	0	-	-	2				
Notes													
	: Volume exceeds capacity \$: Delay exc							n Not [)efined	*• Д	II maio	r volume	e in platoon
. Volume exceeds cap	acity	φ. υ	Ciay CA	Joods J	.003	1. 0011	ιραιαιια	AT NOUL L	Jonned	. A	ii majoi	volunt	o in piatoon

Intersection													
Int Delay, s/veh	3.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	*	ħβ		ች	ħβ			4			4		
Traffic Vol, veh/h	7	750	5	6	355	107	3	0	65	139	0	18	
Future Vol, veh/h	7	750	5	6	355	107	3	0	65	139	0	18	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	100	-	-	50	-	-	-	-	-	-	-	-	
Veh in Median Storage	:,# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	8	815	5	7	386	116	3	0	71	151	0	20	
Major/Minor N	Major1		ľ	Major2			/linor1		N	/linor2			
Conflicting Flow All	502	0	0	820	0	0	1041	1350	410	882	1294	251	
Stage 1	-	-	-	-	-	-	834	834	-	458	458	-	
Stage 2	-	-	-	_		-	207	516		424	836	_	
Critical Hdwy	4.14	-	_	4.14	_	_	7.54	6.54	6.94	7.54	6.54	6.94	
Critical Hdwy Stg 1	-	-	-	-		-	6.54	5.54	-	6.54	5.54	-	
Critical Hdwy Stg 2	-	-	_	-	-	_	6.54	5.54	_	6.54	5.54	-	
Follow-up Hdwy	2.22		_	2.22		_	3.52	4.02	3.32	3.52	4.02	3.32	
Pot Cap-1 Maneuver	1260	-	_	805	-	_	*259	182	591	351	198	*945	
Stage 1	-	-	-	_	-	_	*329	381	-	794	717	-	
Stage 2	-	-	-	-	-	-	*891	671	-	578	381	-	
Platoon blocked, %	1	-	-		-	-	1	1		1	1	1	
Mov Cap-1 Maneuver	1260	-	-	805	-	-	*251	179	591	305	195	*945	
Mov Cap-2 Maneuver	-	-	-	-	-	-	*251	179	-	305	195	-	
Stage 1	-	-	-	-	-	-	*327	379	-	789	711	-	
Stage 2	-	-	-	-	-	-	*865	665	-	506	379	-	
ŭ													
Approach	EB			WB			NB			SB			
HCM Control Delay, s	0.1			0.1			12.4			26.9			
HCM LOS	0.1			0.1			В			D			
TIGIVI EOS							D			U			
N 41		NIDL 1	ED!	FDT	ED.	MDI	MOT	MED	2DL 4				
Minor Lane/Major Mvm	IT	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S					
Capacity (veh/h)		558	1260	-	-	805	-	-	331				
HCM Lane V/C Ratio			0.006	-	-	0.008	-	-	0.516				
HCM Control Delay (s)		12.4	7.9	-	-	9.5	-	-	26.9				
HCM Lane LOS		В	A	-	-	A	-	-	D				
HCM 95th %tile Q(veh))	0.5	0	-	-	0	-	-	2.8				
Notes													
~: Volume exceeds cap	oacity	\$: D	elay ex	ceeds 3	300s	+: Con	nputatio	n Not [Defined	*: A	II majo	r volume	e in platoon
			,								,		

Intersection	
Int Delay, s/veh 0	
Movement EBL EBR NBL NBT SBT SBR	
Lane Configurations 7	
Traffic Vol, veh/h 0 0 0 1244 1911 68	
Future Vol, veh/h 0 0 0 1244 1911 68	
Conflicting Peds, #/hr 0 0 0 0 0 0	
Sign Control Stop Stop Free Free Free Free	
RT Channelized - None - None	
Storage Length - 0 185	
Veh in Median Storage, # 0 0 0 -	
Grade, % 0 0 0 -	
Peak Hour Factor 92 92 92 92 92	
Heavy Vehicles, % 2 2 2 2 2 2	
Mvmt Flow 0 0 0 1352 2077 74	
Major/Minor Minor2 Major1 Major2	
Conflicting Flow All - 1039 - 0 - 0	
Stage 1	
Stage 2	
Critical Hdwy - 7.14	
Critical Hdwy Stg 1	
Critical Hdwy Stg 2	
Follow-up Hdwy - 3.92	
Pot Cap-1 Maneuver 0 *469 0	
Stage 1 0 - 0	
Stage 2 0 - 0	
Platoon blocked, % 1	
Mov Cap-1 Maneuver - *469	
Mov Cap-2 Maneuver	
Stage 1	
Stage 2	
Approach EB NB SB	
HCM Control Delay, s 0 0 0	
HCM LOS A	
TICW LOS A	
Minor Lane/Major Mvmt NBT EBLn1 SBT SBR	
Capacity (veh/h)	
HCM Lane V/C Ratio	
HCM Control Delay (s) - 0	
HCM Lane LOS - A	
HCM 95th %tile Q(veh)	
110W 70W 70W Q(VOII)	
Notes -: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in	

Section Pelay, s/veh O Sement EBL EBR NBL NBT SBT SBR SBR COnfigurations F
Sement EBL EBR NBL NBT SBT SBR
Configurations C Vol, veh/h C V
c Vol, veh/h
re Vol, veh/h
licting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Control Stop Stop Free Free Free Free hannelized - None - None - None None - Non
Hannelized - None - None - None ge Length - 0 185 n Median Storage, # 0 0 0 - e, % 0 0 0 - Hour Factor 92 92 92 92 92 92 y Vehicles, % 2 2 2 2 2 2 2 t Flow 0 0 0 2086 1708 59 f/Minor Minor2 Major1 Major2 licting Flow All - 854 - 0 - 0 Stage 1 Stage 2 al Hdwy Stg 1 al Hdwy Stg 2 w-up Hdwy - 3.92
ry Hour Factor 92 92 92 92 92 92 92 92 92 92 92 94 Flow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n Median Storage, # 0
e, % 0 0 0 0 - Hour Factor 92 92 92 92 92 y Vehicles, % 2 2 2 2 2 2 2 t Flow 0 0 0 2086 1708 59 T/Minor Minor2 Major1 Major2 licting Flow All - 854 - 0 - 0 Stage 1 Stage 2 al Hdwy Stg 1 al Hdwy Stg 1 al Hdwy Stg 2 w-up Hdwy - 3.92
Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 94 by Vehicles, % 2 2 2 2 2 2 2 2 2 by Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
y Vehicles, % 2 2 2 2 2 2 2 2 7 7 7 8 59 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
t Flow 0 0 0 2086 1708 59 r/Minor Minor2 Major1 Major2 licting Flow All - 854 - 0 - 0 Stage 1
r/Minor Minor2 Major1 Major2 licting Flow All - 854 - 0 - 0 Stage 1
Stage 1 - 854 - 0 - 0 Stage 1 - - - - - - Stage 2 - - - - - al Hdwy - 7.14 - - - al Hdwy Stg 1 - - - - al Hdwy Stg 2 - - - - w-up Hdwy - 3.92 - - -
Stage 1 - 854 - 0 - 0 Stage 1 - - - - - - Stage 2 - - - - - al Hdwy - 7.14 - - - al Hdwy Stg 1 - - - - al Hdwy Stg 2 - - - - w-up Hdwy - 3.92 - - -
Stage 1 - 854 - 0 - 0 Stage 1 - - - - - - Stage 2 - - - - - al Hdwy - 7.14 - - - al Hdwy Stg 1 - - - - al Hdwy Stg 2 - - - - w-up Hdwy - 3.92 - - -
Stage 1 - </td
Stage 2 - - - - - al Hdwy - 7.14 - - - al Hdwy Stg 1 - - - - - al Hdwy Stg 2 - - - - - w-up Hdwy - 3.92 - - - -
al Hdwy - 7.14
al Hdwy Stg 1 al Hdwy Stg 2
al Hdwy Stg 2 w-up Hdwy - 3.92
w-up Hdwy - 3.92
I
ap-1 Maneuver 0 ^558 0
•
Stage 1 0 - 0
Stage 2 0 - 0
on blocked, % 1
Cap-1 Maneuver - *558
Cap-2 Maneuver
Stage 1
Stage 2
pach EB NB SB
Control Delay, s 0 0 0
LOS A
LOS M
r Lane/Major Mvmt NBT EBLn1 SBT SBR
city (veh/h)
Lane V/C Ratio
Control Delay (s) - 0
Lane LOS - A
95th %tile Q(veh)
S
sulume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Intersection								
Int Delay, s/veh	0							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		- 7		^	ተተተ	7		
Traffic Vol, veh/h	0	0	0	2454	3023	68		
Future Vol, veh/h	0	0	0	2454	3023	68		
Conflicting Peds, #/hr	. 0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	0	-	-	-	185		
Veh in Median Storag	je,# 0	-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	0	0	0	2667	3286	74		
N.A. 1 (N.A.)					4 1 6			
Major/Minor	Minor2		/lajor1		Major2			
Conflicting Flow All	-	1643	-	0	-	0		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	7.14	-	-	-	-		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	3.92	-	-	-	-		
Pot Cap-1 Maneuver	0	*183	0	-	-	-		
Stage 1	0	-	0	-	-	-		
Stage 2	0	-	0	-	-	-		
Platoon blocked, %		1		-	-	-		
Mov Cap-1 Maneuver		*183	-	-	-	-		
Mov Cap-2 Maneuver		-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
g • -								
					0.5			
Approach	EB		NB		SB			
HCM Control Delay, s			0		0			
HCM LOS	A							
Minor Lane/Major Mvi	mt	NBT E	FBI n1	SBT	SBR			
Capacity (veh/h)		I UDI L	LULIII		UDIK			
HCM Lane V/C Ratio		•	-	-	-			
HCM Control Delay (s		-	-	-	-			
	>)	-	0	-	-			
HCM Lane LOS	h)	-	Α	-	-			
HCM 95th %tile Q(ve	II)	-	-	-	-			
Notes								
~: Volume exceeds ca	apacity	\$: De	elav ex	ceeds 3	300s	+: Con	nputation Not Defined	*: All major volume in platoon
. Tolaino onoccas de	apaony	ψ. Β	J.aj on	20043	303		-paration 110t Boilliou	ai major voidino in piatoon

Agy, s/veh	Intersection								
Configurations	Int Delay, s/veh	0							
Configurations	Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Vol, veh/h	Lane Configurations								
Vol, veh/h	Traffic Vol, veh/h	0		0					
Stage 1	Future Vol, veh/h								
Stop Stop Free Free	Conflicting Peds, #/h						0		
annelized	Sign Control		Stop						
Median Storage, # 0	RT Channelized								
Median Storage, # 0	Storage Length	-		-		-			
1	Veh in Median Storag	ge, # 0	-	-	0	0	-		
Hour Factor 92 92 92 92 94 92 Vehicles, % 2 2 2 2 2 2 2 2 Flow 0 0 0 0 3432 2916 59 Minor Minor2 Major1 Major2 Citing Flow All 158 0 0 0 Stage 1 0 0 0 I Hdwy 7 7.14 0 0 0 I Hdwy Stg 1 0 0 0 I Hdwy Stg 2 0 0 0 0 Stage 1 0 0 0 0 0 Stage 1 0 0 0 0 0 Stage 1 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 2 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 0 Stage 1 0 0 0 0 0 0 Stage 2 0 0 0 0 0 0 0 Stage 3 0 0 0 0 0 0 Stage 4 0 0 0 0 0 0 Stage 5 0 0 0 0 0 0 Stage 6 0 0 0 0 0 0 Stage 7 0 0 0 0 0 0 Stage 8 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 0 0 0 0 0 0 Stage 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Grade, %	•	-	-	0	0	-		
Minor Minor2 Major1 Major2 cting Flow All - 1458 - 0 - 0 Stage 1	Peak Hour Factor	92	92	92	92	94	92		
Minor Minor2 Major1 Major2 cting Flow All - 1458 - 0 - 0 Stage 1	Heavy Vehicles, %	2	2	2	2	2	2		
Stage 1 - 1458 - 0 - 0 Stage 2	Mvmt Flow	0	0	0	3432	2916	59		
Stage 1									
Stage 1 - 1458 - 0 - 0 Stage 2	Major/Minor	Minor2	N	/laior1	N	Maior2			
Stage 1	Conflicting Flow All						0		
Stage 2 - </td <td></td> <td><u>-</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		<u>-</u>							
Hdwy Stg 1		_							
Hdwy Stg 1	Critical Hdwy	_							
Hdwy Stg 2	Critical Hdwy Stg 1	_							
-up Hdwy - 3.92	Critical Hdwy Stg 2	_							
ap-1 Maneuver	Follow-up Hdwy	_		-	-				
Stage 1	Pot Cap-1 Maneuver								
Stage 2 0 - 0 - - - n blocked, % 1 - - - - ap-1 Maneuver - *271 - - - ap-2 Maneuver - - - - - Stage 1 - - - - - Stage 2 - - - - - ach EB NB SB Control Delay, s 0 0 0 LoS A Ity (veh/h)							_		
n blocked, % 1									
ap-1 Maneuver - *271	Platoon blocked, %								
ap-2 Maneuver Stage 1	Mov Cap-1 Maneuve	r -		-	-		-		
Stage 1 - </td <td>Mov Cap-2 Maneuve</td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td></td>	Mov Cap-2 Maneuve			_	_	_	_		
Stage 2			-	-			-		
Control Delay, s		-	-	_	_	_	_		
Control Delay, s 0 0 0 LOS A Lane/Major Mvmt NBT EBLn1 SBT SBR ity (veh/h)	2.290 2								
Control Delay, s 0 0 0 LOS A Lane/Major Mvmt NBT EBLn1 SBT SBR ity (veh/h)	Approach	ED		NID		CD			
Lane/Major Mvmt NBT EBLn1 SBT SBR ity (veh/h)									
Lane/Major Mvmt NBT EBLn1 SBT SBR ity (veh/h)	HCM LOS			U		U			
ity (veh/h)	TOW LUS	А							
ity (veh/h)	Minor Lang/Major Mu	ımt	NDT	DI n1	CDT	CDD			
		riil	INDI	DLIII	SDI	SDK			
and VII Pain	Capacity (veh/h)		-	-	-	-			
	HCM Cantrol Doloy (-	-	-	-			
	HCM Control Delay (S)			-	-			
	HCM Lane LOS	h)	-	А	-	-			
/out %uie Q(ven)	HCM 95th %tile Q(ve	en)	-	-	-	-			
	Notes								
ume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon	-: Volume exceeds c	apacity	\$: De	elay exc	ceeds 3	300s	+: Con	nputation Not Defined	*: All major volume in platoon

Intersection									
Int Delay, s/veh	0.7								
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		7	*		ተተኈ	02.1			
Traffic Vol, veh/h	0	90	72	1242	1908	2			
Future Vol, veh/h	0	90	72	1242	1908	2			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Free	Free			
RT Channelized	- -	None	-	None	-	None			
Storage Length		0	185	-		NOTIC			
Veh in Median Storage,	# 0	-	105	0	0				
						-			
Grade, %	0	-	-	0	0	-			
Peak Hour Factor	92	92	92	92	92	92			
Heavy Vehicles, %	2	2	2	2	2	2			
Mvmt Flow	0	98	78	1350	2074	2			
Major/Minor N	linor2	ı	Major1		Major2				
Conflicting Flow All	-			0	-	0			
Stage 1		1030	2070	-	_	-			
Stage 2			_	_	_	_			
Critical Hdwy	-	7.14	5.34	_	_	-			
,	-	7.14	5.54	-	-	-			
Critical Hdwy Stg 1	-								
Critical Hdwy Stg 2	-	2.02	-	-	-	-			
Follow-up Hdwy	-	3.92	3.12	-	-	-			
Pot Cap-1 Maneuver	0	*469	*590	-	-	-			
Stage 1	0	-	-	-	-	-			
Stage 2	0	-	-	-	-	-			
Platoon blocked, %		1	1	-	-	-			
Mov Cap-1 Maneuver	-	*469	*590	-	-	-			
Mov Cap-2 Maneuver	-	-	-	-	-	-			
Stage 1	-	-	-	-	-	-			
Stage 2	-	-	-	-	-	-			
Ü									
Approach	EB		NB		SB				
HCM Control Delay, s	14.7		0.7		0				
HCM LOS	В								
Minor Long / Main Ma		ND	NDT	FDL : 1	CDT	CDD			
Minor Lane/Major Mvmi		NBL	MRT	EBLn1	SBT	SBR			
Capacity (veh/h)		* 590	-	469	-	-			
HCM Lane V/C Ratio		0.133	-	0.209	-	-			
HCM Control Delay (s)		12	-	14.7	-	-			
HCM Lane LOS		В	-	В	-	-			
HCM 95th %tile Q(veh)		0.5	-	0.8	-	-			
Notes									
~: Volume exceeds cap	acity	\$: D	elay ex	ceeds 3	300s	+: Con	nputation Not Defined	*: All major volume in platoon	
		,, ,	J UN					,	

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7	ች		ተተኈ	
Traffic Vol, veh/h	0	89	100	1917	1567	2
Future Vol, veh/h	0	89	100	1917	1567	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	185	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	97	109	2084	1703	2
Major/Minor N	/linor2	ľ	Major1	ľ	Major2	
Conflicting Flow All	-	853	1705	0	- viajoiz	0
Stage 1		000	1703	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	7.14	5.34	_	_	_
Critical Hdwy Stg 1	_	7.17	J.JT -	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.92	3.12	_	_	_
Pot Cap-1 Maneuver	0	*558	*701	_	_	_
Stage 1	0	-	701	_	_	_
Stage 2	0	-	_	_	_	_
Platoon blocked, %	U	1	1	_	_	_
Mov Cap-1 Maneuver	_	*558	*701	_	_	_
Mov Cap-1 Maneuver	-	-	701	_	_	_
Stage 1	_	_	_	_	_	_
Stage 2	-	-	-	-	-	
Stage 2	_	-	_	-	-	
Approach	EB		NB		SB	
HCM Control Delay, s	12.8		0.5		0	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		* 701	-		-	-
HCM Lane V/C Ratio		0.155		0.173	_	_
HCM Control Delay (s)		11.1	-		_	-
HCM Lane LOS		В	_	12.0 B	-	-
HCM 95th %tile Q(veh)		0.5	_	0.6	_	
		3.0		3.0		
Notes						
~: Volume exceeds cap	pacity	\$: D	elay ex	ceeds 3	800s	+: Com

1.1					
EBL	EBR	NBL	NBT	SBT	SBR
	7				
0	90		2452	3020	2
0	90	72	2452	3020	2
0	0	0	0	0	0
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
-	0	185	-	-	-
, # 0	-	-	0	0	-
0	-	-	0	0	-
92	92	92	92	92	92
2	2	2	2	2	2
0	98	78	2665	3283	2
linor2	ı	Maior1	ľ	Mainr2	
					0
					-
-					_
-			-		-
_			-		-
-			-		-
					-
			-		-
			_		
					-
U					_
					_
					_
			_	_	
				SB	
45.2		8.0		0	
Е					
t	NBI	NBT	FBI n1	SBT	SBR
				-	-
	0.34		0.535	_	_
			45.2	-	_
	28.5		TU.4		_
	28.5 D	-		_	_
	D	-	Е	-	-
		-		-	-
acity	D 1.4	-	E 2.7	-	+: Com
1	EBL 0 0 0 Stop # 0 0 92 2 0 finor2	EBL EBR 0 90 0 90 0 90 0 Stop Stop - None - 0 - 0 - 92 92 2 2 2 0 98 Inior2	EBL EBR NBL 0 90 72 0 90 72 0 0 0 Stop Free None - 0 185 # 0 - 0 - 92 92 2 2 0 98 78 Major1 - 1643 3285 - - - 7.14 5.34 - - - - 7.14 5.34 - - - - 3.92 3.12 - 0 - - - 0 - - - 1 1 - - - - - - - - -	EBL EBR NBL NBT 0 90 72 2452 0 90 72 2452 0 0 0 0 Stop Stop Free Free - None - None None - None - None - None - 0 185 - O 0 - 0 92 92 92 92 92 92 2 2 2 2 2 0 98 78 2665 Minor2 Major1 I I - 1643 3285 0 - - - - - 7.14 5.34 - - 7.14 5.34 - - 3.92 3.12 - 0 - - - 0 - - - 1 1 -	EBL EBR NBL NBT SBT Image: color of the color

Intersection								
Int Delay, s/veh	0.7							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		7	ሻ		ተ ተኈ			
Traffic Vol, veh/h	0	89	100	3155	2737	2		
Future Vol, veh/h	0	89	100	3155	2737	2		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	-	0	185	-	-	-		
Veh in Median Storage		-	-	0	0	-		
Grade, %	0	-	-	0	0	-		
Peak Hour Factor	92	92	92	92	94	92		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	0	97	109	3429	2912	2		
Major/Minor N	/linor2	ľ	Major1	1	Major2			
Conflicting Flow All	-		2914	0	-	0		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Critical Hdwy	-	7.14	5.34	-	-	-		
Critical Hdwy Stg 1	-	-	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		
Follow-up Hdwy	-	3.92	3.12	-	-	-		
Pot Cap-1 Maneuver	0	*271	*341	-	-	-		
Stage 1	0	-	-	-	-	-		
Stage 2	0	_	-	-	_	-		
Platoon blocked, %		1	1	-	-	-		
Mov Cap-1 Maneuver	-	*271	*341	-	-	-		
Mov Cap-2 Maneuver	-	-	-	-	-	-		
Stage 1	-	-	-	-	-	-		
Stage 2	-	-	-	-	-	-		
Approach	EB		NB		SB			
HCM Control Delay, s			0.6		0			
HCM LOS	D		5.5					
Minor Lane/Major Mvm	t	NBL	NRT	EBLn1	SBT	SBR		
Capacity (veh/h)		* 341	-		301	JUIX -		
HCM Lane V/C Ratio		0.319		0.357	-	-		
HCM Control Delay (s)		20.4	-		-	-		
HCM Lane LOS		20.4 C	-	25.5 D	-	-		
HCM 95th %tile Q(veh)		1.3	-			-		
		1.0		1.0				
Notes		* -			200		LU NIDE	* All
~: Volume exceeds cap	acity	\$: D	elay ex	ceeds 3	300s	+: Com	putation Not Defined	*: All major volume in platoon

APPENDIX E

Queueing Analysis Worksheets

1: Tower Road & 81st Avenue

	۶	-	•	←	•		†	/	-	ļ	4	
Lane Group	EBL	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	120	8	113	30	6	149	1202	49	42	2168	119	
v/c Ratio	0.71	0.03	0.42	0.17	0.02	0.75	0.32	0.04	0.12	0.89	0.11	
Control Delay	72.6	44.5	21.1	47.6	0.2	34.6	9.1	3.9	4.2	23.0	3.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	72.6	44.5	21.1	47.6	0.2	34.6	9.1	3.9	4.2	23.0	3.1	
Queue Length 50th (ft)	90	6	22	21	0	67	151	3	8	841	10	
Queue Length 95th (ft)	104	5	46	27	0	m95	195	m8	11	986	12	
Internal Link Dist (ft)		232		446			343			1047		
Turn Bay Length (ft)	125				325	250		250	100			
Base Capacity (vph)	206	279	307	219	284	208	3732	1176	362	2431	1119	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.58	0.03	0.37	0.14	0.02	0.72	0.32	0.04	0.12	0.89	0.11	
Intersection Summary												

m Volume for 95th percentile queue is metered by upstream signal.

	۶	-	•	←	•	4	†	~	-	↓	4	
Lane Group	EBL	EBT	EBR	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	228	1	144	52	24	68	2062	25	6	1654	92	
v/c Ratio	0.78	0.00	0.34	0.17	0.06	0.37	0.59	0.02	0.04	0.74	0.09	
Control Delay	62.1	32.0	13.8	36.4	1.0	14.9	14.1	2.3	6.0	12.9	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	62.1	32.0	13.8	36.4	1.0	14.9	14.1	2.3	6.0	12.9	2.6	
Queue Length 50th (ft)	168	1	25	33	0	16	252	0	1	238	7	
Queue Length 95th (ft)	136	5	64	33	0	42	532	m2	m2	#242	7	
Internal Link Dist (ft)		232		446			343			1047		
Turn Bay Length (ft)	125				325	250		250	100			
Base Capacity (vph)	465	644	615	501	583	197	3513	1110	158	2225	1020	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.49	0.00	0.23	0.10	0.04	0.35	0.59	0.02	0.04	0.74	0.09	

 ^{# 95}th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 m Volume for 95th percentile queue is metered by upstream signal.

	•	-	•	←	4	†	~	\	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	151	253	22	10	910	1648	37	26	3087	357	
v/c Ratio	0.96	0.62	0.25	0.08	0.85	0.43	0.03	0.13	1.32	0.43	
Control Delay	119.7	12.8	59.0	39.0	41.2	11.2	0.5	9.5	177.7	9.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	119.7	12.8	59.0	39.0	41.2	11.2	0.5	9.5	177.7	9.7	
Queue Length 50th (ft)	61	1	17	4	364	308	0	5	~1142	59	
Queue Length 95th (ft)	#130	74	43	21	m#527	371	m0	11	#1228	119	
Internal Link Dist (ft)		232		446		343			1047		
Turn Bay Length (ft)	125				250		250	100			
Base Capacity (vph)	157	562	196	262	1076	3844	1219	204	2330	829	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.96	0.45	0.11	0.04	0.85	0.43	0.03	0.13	1.32	0.43	

- Volume exceeds capacity, queue is theoretically infinite.
- Queue shown is maximum after two cycles.

 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

1: Tower Road & 81st Avenue

	۶	-	•	←	4	†	~	\	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	367	676	33	21	363	2951	22	5	2280	140	
v/c Ratio	0.55	1.04	0.49	0.10	0.84	1.00	0.02	0.03	1.04	0.18	
Control Delay	48.6	75.4	74.3	25.8	68.2	45.3	0.1	10.0	56.7	3.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	48.6	75.4	74.3	25.8	68.2	45.3	0.1	10.0	56.7	3.2	
Queue Length 50th (ft)	141	~459	24	3	143	790	0	1	~703	7	
Queue Length 95th (ft)	185	#694	#75	29	#217	#1071	m0	m0	#777	20	
Internal Link Dist (ft)		232		446		343			1047		
Turn Bay Length (ft)	125				250		250	100			
Base Capacity (vph)	764	649	73	219	443	2944	956	143	2197	761	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.48	1.04	0.45	0.10	0.82	1.00	0.02	0.03	1.04	0.18	

Intersection Summary

- Volume exceeds capacity, queue is theoretically infinite.
- Queue shown is maximum after two cycles.

 95th percentile volume exceeds capacity, queue may be longer.
 - Queue shown is maximum after two cycles.
- m Volume for 95th percentile queue is metered by upstream signal.

APPENDIX F

Conceptual Site Plan

